

CQPUSI ROBOT CONTROL SYSTEM

User Manual

PCS07xx Series

Programmable capacitance pressure sensor controller

1. Version Control

1) **Update Records**

Date	Author	Version	Remark
2023/11/13		V0.1.0	Initial

Catalog

1 Introduction	5
1.1 Statement of intellectual property right	5
1.2 Disclaimer	5
2 Overview	6
2.1 General Description	6
2.2 Features	6
2.3 Production & Ordering Information	6
3 Connector Description	7
3.1 Terminal port location	7
3.2 Power connection J1	7
3.3 Measurement interface J2	7
3.4 Measurement interface J3	7
3.5 Pressure channel interface J4	7
3.6 LED light display	8
4 Typical application	8
4.1 Single-ended pattern 1	8
4.2 Single-ended pattern 2	8
4.3 Single-ended pattern 3	9
4.4 Differential pattern	9
4.5 Sliding window mode	10
4.6 Trigger configuration	10
4.7 Capacitance calibration	11
4.8 Empty needle calibration	11
4.9 Automatic reporting mode	12
4.10 Response delay	12
5 Installation method	12
6 CANopen communication	13
6.1 CANopen introduction	13
6.2 CAN frame structure	13
6.3 CAN communication configuration	14
6.3.1 Node ID	14
6.3.2 Baud rate	14
6.4 System information acquisition	15
6.4.1 Device node name	15
6.4.2 Hardware version	15
6.4.3 Software version	15
6.4.4 System control	15
6.5 Sensor parameters	16
6.5.1 Sensor status word	16
6.5.2 Sensor control word	16
6.5.3 Capacitance value	16
6.5.4 Work pattern	17
6.5.5 Trigger settings	17

6.5.6 Pressure value	18
6.5.7 Pressure trigger settings	18
7 Introduction of the Debug Tool	19
7.1 Installation preparation	19
7.2 Software installation	19
7.2.1 Driver installation	19
7.2.2 Tool software installation	19
7.3 Software instructions	19
7.3.1 Preparation for using	19
7.3.2 Main interface	20
7.3.3 Capacitive sensor control	20
7.3.4 PDO mapping	21
7.3.5 Firmware upgrade	22
8 Electrical Characteristics	22
9 Dimensions	23
10 Appendix 1 PCS07xx Object dictionary table	24
11 Appendix 2 CANOPEN Communication example	29
11.1 SDO Reading and writing example	29
11.1.1 SDO Read	29
11.1.2 SDO Write in	30
12 Appendix 3 PDO configuration example	33
12.1 PDO overview	33
12.1.1 The structure PDO——Mapping parameter	33
12.1.2 The structure PDO——Communication parameter	34
12.1.3 PDO Trigger mode	35
12.2 PDO Configuration example	36
13 Appendix 4 SDO abort code error	37

1 Introduction

1.1 Statement of intellectual property right

PCSO7xx series controller has been applied for the following national patent:

- Controller scheme and method have been applied for the protection of the invention patent.
- Controller circuit has been applied for the protection of utility model patent.
- Controller appearance has been applied for the protection of appearance patent protection.

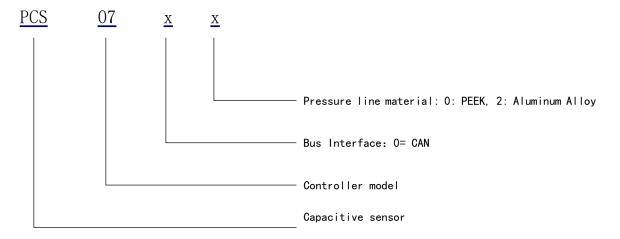
PCSO7xx series controller has embedded firmware code, it would be considered as a violation of intellectual property protection act and regulations that any behavior of trying to destroy the function of firmware code protection. If this behavior acquires the software or other achievements of intellectual property protection without authorization of CQPUSI, CQPUSI has the right to stop such behavior by filing a lawsuit according to the act.

1.2 Disclaimer

The using method of the device and other content in the description of this manual is only used to provide convenience for you, and may be update in future version. To ensure the application conforms to the technical specifications is the responsibility of your own. CQPUSI does not make any form of statement or guarantee to the information, which include but not limited to usage, quality, performance, merchantability or applicability of specific purpose. CQPUSI is not responsible for these information and the consequences result caused by such information. If the CQPUSI device is used for life support and/or life safety applications, all risks are borne by the buyer. The buyer agrees to protect the CQPUSI from legal liability and compensation for any injury, claim, lawsuit or loss caused by the application.

2 Overview

2.1 General Description


PCS07xx is a controller that integrates capacitive sensors and pressure sensors, which can not only detect liquid triggers by programmable capacitive sensing, but also judge whether the pipeline is blocked and leaking through the change of pressure value, and the two systems can operate independently. Both capacitance and voltage values can be converted into intuitive data outputs, and triggers can be determined by status bit changes and LEDs. PCS07xx provides a simple and fast control command set, which can be connected to the control host through CAN, small size, cost-effective, one model, two uses, and a simple and flexible interface. It is suitable for reagent level detection and container level detection of various medical, environmental protection and laboratory instruments.

2.2 Features

- √ 9^{24V} widely voltage supply
- √ Two capacitive sensor detection channels, one pipeline detection channel
- ✓ Configurable digital level output
- ✓ LED result indication
- ✓ Capacitance detection range: 0 ~ 2.5nf
- ✓ Pressure detection range: +/- 10kpa
- ✓ Accuracy of the capacitive detection: 10fF
- ✓ Accuracy of the pressure detection: +/-2%Fspan
- ✓ Microsecond ultrafast response speed of capacitance, 2ms of Pressure
- ✓ Using active shielding technology to improve detection reliability
- ✓ Adaptive low frequency excitation circuit for ultra-low EMI radiation
- ✓ Gold Plated shielded connectors for excellent anti-interference capability
- ✓ 16mm x 56mm x7.6mm. Small volume, easy to install

2.3 Production & Ordering Information

In order to serve you quicker and better, please provide the product number in following format when ordering PCSO7xx:

3 Connector Description

3.1 Terminal port location

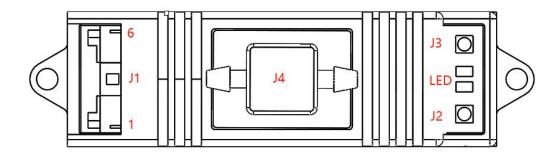


Figure 3-1

3.2 Power connection J1

Pin	1	2	3	4	5	6
Designator	VCC	GND	CANL	CANH	PC-TR	PN-TR

Description:

VCC: Supply voltage, 9~24V; GND: Supply voltage ground.

CANH/CANL: CAN communication interface;

PC-TR: Level trigger signal output pin (5V), configurable to trigger high or

PN-TR: Pressure trigger signal output pin (5V), configurable to trigger high or low

3.3 Measurement interface J2

Capacitance measurement channel 1 interface, using HRS U.FL-R-SMT-1 coaxial connector. The shield of the connector interface is suspended and placed as close as possible to the electrode or reagent pin, and the core of the connector interface is connected to the positive pole of the measuring electrode.

3.4 Measurement interface J3

Capacitance measurement channel 2 interface, using HRS U.FL-R-SMT-1 coaxial connector. The shield of the connector interface is suspended and placed as close as possible to the electrode or reagent pin, and the core of the connector interface is connected to the positive pole of the measuring electrode.

3.5 Pressure channel interface J4

Pressure detection channel interface, aperture is R0.75mm, the maximum outer circle is R1.90mm, the material is aluminum alloy or PEEK, alkaline solution please choose PEEK (aluminum anodizing film is not corrosion-resistant in alkaline solution), the installation should be closer to the reagent needle line, can be used as liquid level detection function.

3.6 LED light display

LED is divided into red light and green light, green light is the power indicator, the LED light will flash at a frequency of 2.5Hz after normal power—on, the red light is the trigger indicator, when the red light is on, it means that the internal judgment is the trigger state, if the red light is always on, you need to check whether the trigger value setting is normal.

4 Typical application

The PCSO7xx controller can be connected to the capacitor plate to be tested using a coaxial cable, and the following are a few typical connections for double-layer metal probe level detection, the mode can be set by selecting the PUSICAN tool software.

4.1 Single-ended pattern 1

This mode selects the detection channel one to work, for the double-layer needle connection method, J2 is connected to the coaxial wire, and the coaxial wire is divided into black rubber, shielding layer, core skin and core wire from the outside to the inside, the shield layer is connected to the outer metal of the double-layer needle, and the core wire is connected to the inner layer needle of the double-layer needle.

If the probe is a single-layer needle, then only the needle needs to be connected to the core wire, and the shield layer is suspended.

Single-ended mode 1 is mainly used for routine volume measurement, generally above 2mL.

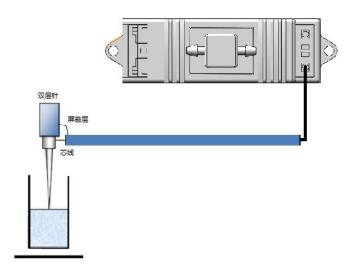


Figure 4-1

4.2 Single-ended pattern 2

This mode selects the detection channel 2 to operate, and the detection feedback capacitance value is magnified by two times the actual capacitance value (equivalent to magnifying the detection value by two times on the basis of the detection result of single-ended mode 1), which is suitable for the detection of small volume liquid capacitance, similar to the connection method of single-ended mode 1.

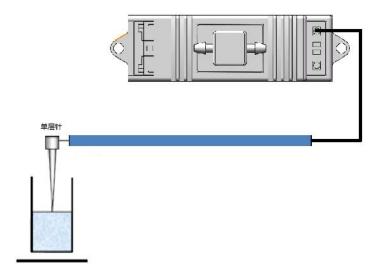


Figure 4-2

4.3 Single-ended pattern 3

When the volume of the reagent bottle or liquid to be measured is very small, in order to improve the detection accuracy, the connection method in Figure 4-3-1 below can be used, and the interface of single-ended mode 2 can be used. This mode can also be used to measure the capacitance of both ends of an electronic component.

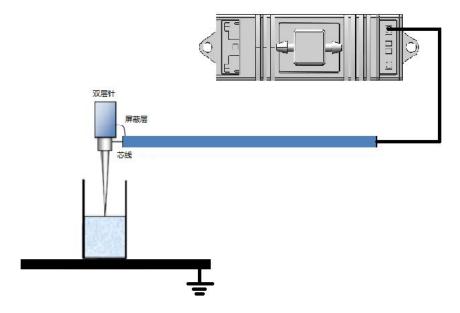


Figure 4-3

4.4 Differential pattern

If the coupling capacitance of the equipment rack is very large, or if non-contact measurement of the liquid level in the container is required, differential mode can be used. The core of the J2 cable is connected to one side of the electrode, and the core of the J3 cable is connected to the electrode of the other side. If the electrodes on both sides are double-layered, and the outer metal is connected to the shielding layer

of the coaxial cable, the detection accuracy will be significantly improved.

Differential mode is typically used for waste buckets or other large-volume sample testing.

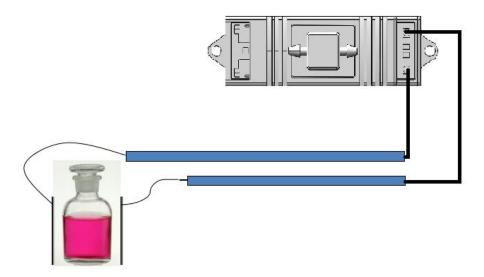


Figure 4-4

4.5 Sliding window mode

The sliding window mode is suitable for the case where the capacitance value drifts slowly or the capacitance to be measured is very small, as shown in Figure 4-5-1 below, in the sliding window mode, it can achieve stable detection of capacitance trips as low as 500fF, it is superimposed on the above four modes, please refer to the 6003 register description for the specific configuration method.

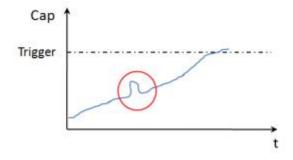


Figure 4-5

4.6 Trigger configuration

PCSO7xx controller supports capacitance trigger level output, and the trigger threshold can be configured by debugging tool software PUSICAN. When the measured capacitance reaches the threshold value, the corresponding LED indicator lights up, and the TR output port will output the corresponding level.

4.7 Capacitance calibration

In order to obtain better stability and detection accuracy, the PCS07xx controller uses digital signal processing technology to control the measurement loop, as shown in Figure 4-6 below, the external environment (temperature, humidity) and connection mode of the system have a significant impact on the system reference capacitance value.

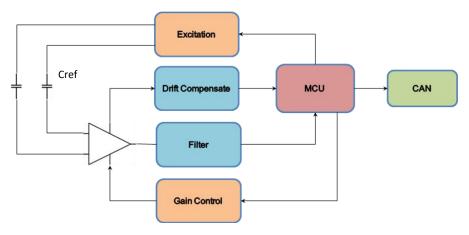


Figure 4-6

PGS07xx built-in control algorithm ensures that measurement linearity, as shown in <u>Figure 4-6</u>, is maximally protected from these environmental factors. However, users may need to compensate for the basic capacitance value depending on circumstances.

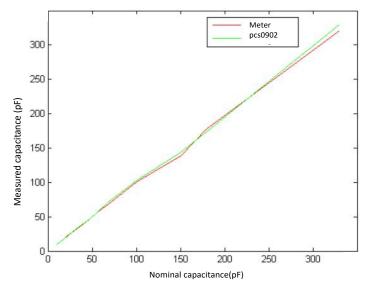


Figure 4-6

4.8 Empty needle calibration

When the PCSO7xx controller and level probe assembly are installed, and the basic capacitance formed by external mechanisms such as the rack has been stabilized, the empty pin calibration can be performed through the command (or PUSICAN software tool), and the PCSO7xx will obtain the current capacitance value and automatically subtract the capacitance value in the subsequent measurement process. When the set trigger value is less than the capacitance value after the null pin calibration, the TIRG pin will output

the trigger level.

4.9 Automatic reporting mode

After the PCS07xx controller is powered on, it enters the continuous measurement mode automatically, and the Active indicator on the board flickers. The measurement results will be automatically reported through the PDO of the CANOPEN protocol.

4.10 Response delay

For high-precision laboratory testing equipment, the accuracy of liquid level detection, false alarm rate, response speed are three important indicators. The PCSO7xx controller uses a high-speed processor to execute control routines and filter algorithms, and reduces the response time to microseconds, while ensuring detection accuracy and false alarm rate. As shown in the following figure. At the same time, in order to reduce the antenna effect caused by the reagent needle, one of the main defects of inductance resonance measurement, and reduce electromagnetic radiation, the PCSO7xx controller limits the excitation frequency to less than 10 KHz.

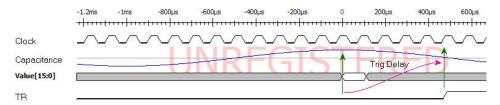


Figure 4-7

5 Installation method

The PCS07xx has two mounting holes that can be attached directly to the module for cable connection.

PCSO7xx uses wiring plugs to plug in, and the applicable wire specification is $\#26^{\sim}\#22AWG$.

6 CANopen communication

6.1 CANopen introduction

CAL provides all network management services and message protocols, but it does not define the contents of objects or the kind of objects being communicated (it defines how, not what). This is where CANopen enters the picture. CANopen is built on top of CAL, using a subset of CAL services and communication protocols, and providing an implementation of a distributed control system. It does this in such a way that nodes can range from simple to complex in their functionality without compromising the interoperability between the nodes in the network.

Central concept in CANopen is the Device Object Dictionary (OD), a concept used in other fieldbus systems as well(Profibus, Interbus-S). CANopen communication through the object dictionary (OD) can access all the parameters of the driver. Note that the Object Dictionary of CAL, it is an implementation aspect of CANopen. The Object Dictionary which PCSO7xx is supported is shown in Appendix 1.

CANopen communication model defines the following messages (communication objects);

Abbreviation	Full name	Description	
SD0	Service Data Object	Used for non-time critical data, such as	
		parameters.	
PD0	Process Data Object	Used to transfer time critical data(Setting	
		values, Control word, status information,	
		etc.)	
SYNC	Synchronization	Used to synchronize CAN nodes.	
	Message		
EMCY	Emergency Message	Used to transport alarm event of a driver.	
NMT	Network Management	Used for CANopen network management.	
Heartbeat	Error Control Protocol	Used for monitoring the life status of all	
		nodes.	

6.2 CAN frame structure

CAN Data is transmitted between the host (controller) and the bus node through the data frame. The following table is the structure of the data frame.

	Arbitration domain		Control	Data	Check	Response	Tail
Header	COB-ID(communication	RTR(remote		domain			frame
	object identifier)	request)					

1bit 11 or 29 bits 1bit 6bits 0~8byte 16bits 2bits 7bits

When the transceiver is realized through the software, except to the COB-ID and data domain, the other bits in the frame structure are completed by the hardware of CAN transceiver controller. So Users only need to limit the COB-ID and data domain.

Note: This drive uses standard frame format, COB-ID is 11 bits. Remote frame is not supported temporarily.

The distribution of COB-ID is as follows:

Function Code					NODE ID	(Node a	ddress)			
10	9	8	7	6	5	4	3	2	1	0

The controller parameters are accessed by the SDO read and write objects. For the driver, whose status information is needed to report to the main station in real time can be achieved by configuring the PDO.

6.3 CAN communication configuration

PCSO7xx factory default settings: node ID is 5, the baud rate is 125Kbit/s. The user can modify the settings by supporting the CANOPEN master debugging tool.

6.3.1 Node ID

Object name	Node ID
SDO ID	0x2002
Object type	U8, rw
Range	1–127
Storage type	ROM
Default value	5

6.3.2 Baud rate

Object name	Baud rate
SDO ID	0x2003
Object type	U8, rw
Range	0, 1, 2, 3, 4, 5, 6, 7, 8
Storage type	ROM
Default value	4

Relationship between each index and the baud rate is as follows:

- 0: 20Kbit/s
- 1: 25Kbit/s
- 2: 50Kbit/s
- 3: 100Kbit/s
- 4: 125Kbit/s
- 5: 250Kbit/s
- 6: 500Kbit/s
- 7: 800Kbit/s
- 8: 1000Kbit/s

6.4 System information acquisition

6.4.1 Device node name

Object name	Device node name
SDO ID	0x1008
Object type	string, ro
Range	_
Storage type	ROM
Default	_
value	

6.4.2 Hardware version

Object name	Hardware version
SDO ID	0x1009
Object type	string, ro
Range	_
Storage type	ROM
Default	_
value	

6.4.3 Software version

Object name	Software version
SDO ID	0x100A
Object type	string, ro
Range	_
Storage type	ROM
Default	_
value	

6.4.4 System control

Object name	System control
SDO ID	0x2007
Object type	U8, ro
Range	1, 2, 3
Storage type	RAM
Default	_
value	

System control values are defined as follows:

- 1: Jump to bootloader
- 2: Save Object Dictionary parameters
- 3: Reset factory settings

Note: The Storage type in the Object Dictionary which is ROM parameter is temporarily stored in memory after written by SDO. If you need to keep it permanently,

you need to perform power down save operation for the Object Dictionary parameter.

6.5 Sensor parameters

6.5.1 Sensor status word

Object name	Sensor status
SDO ID	0x6000
Object type	U16, rw
Range	bit
Storage type	RAM
Default	0-3
value	

Sensor status is defined as follows:

Bit0: Triger
Bit1: Overflow

When the overflow state is set to one, the trigger state bit is also set to one, so there are only three values: 0/1/3.

6.5.2 Sensor control word

Object name	Sensor control word
SDO ID	0x6001
Object type	U16, rw
Range	bit
Storage type	RAM
Default	0-1
value	

The sensor status word is defined as follows:

Bit0: Empty needle calibration

In addition, the empty pin calibration is to display the current capacitance value as 0, which cannot eliminate the basic capacitance value, which can be simply understood as a tare function.

6.5.3 Capacitance value

Object name	Capacitance value (Unit: fF)
SDO ID	0x6002
Object type	\$32, rw
Range	-2^31~2^31-1
Storage type	RAM
Default	0
value	

6.5.4 Work pattern

Object name	Work pattern
SDO ID	0x6003
Object type	U8, rw
Range	0~3
Storage type	RAM
Default	0
value	

The value of the working mode is defined at bit[2:0] as follows:

- 0: Single-ended pattern 1.
- 1: Single-ended pattern 2.
- 3: Single-ended pattern 3.
- 4: Differential pattern.

Bit[4] defines the sliding window mode to be turned on or off; When bit[4]=1 enables the sliding window mode, bit[15:8] defines the detection length parameter of the sliding window. bit[31:16] defines the trigger threshold, 16 bits with a signed number. The sliding window mode can be turned on at the same time as the mode defined by bit[2:0], which is equivalent to a detection method superimposed on bit[2:0].

Example of command settings:

Send: 605 23 03 60 00 11 0A 64 00 Return: 585 60 03 60 00 00 00 00 00

Note: Set the detection mode to sliding window mode, the detection mode is single-ended 2, the signal input port is, the detection length is 10, and the trigger value is 100ff.

It can also be directly set on the pusican debugging software above v60, the data input is the input trigger number and threshold, for example, 10 times, 100fF is 00 64 0A, converted to decimal input is 25610, and then check the sliding window mode. The original mode selection to single-ended 1 is to use the interface of single-ended 1 to apply the sliding window mode.

Note: (1) The sliding window will slide forward with the test waveform, and the fixed width is 51.2ms; (2) When the trigger is successful, the rising edge of the TR port will remain high for 90ms; (3) Due to the increase of functions, the object type of the 6003 register above v17 firmware is S32, and the object type of the old version below v17 is U8

6.5.5 Trigger settings

The trigger output of PCSO7xx can be set. When the actual capacitance value is greater than the set capacitance value, the trigger signal output is effective.

Object name	Trigger setting
SDO ID	0x6005

Object type	Record
Storage type	ROM
Number of parameters	2

Subindex 0x01: Trigger polarity setting

Object type	U8, rw
Range	0~1
Default value	0

When set to 0, the trigger polarity is positive, and the effective level of the trigger signal output is high, that is, it is usually low (OV) and high (5V) is triggered;

When set to 1, the trigger polarity is negative, and the effective level of the trigger signal output is low, that is, it is usually high (5V) and low (0V).

Subindex 0x02: Trigger capacitance value

Object type	\$32, rw
Range	-2 ³¹ ² ³¹ -1
Default value	0

Set the trigger value, which can be saved. When the detected capacitance value is greater than the set trigger value, the trigger state is set to one, and the LED (red) light starts flashing.

6.5.6 Pressure value

Object name	Pressure value(Unit: fF)
SDO ID	0x6008
Object type	\$32, rw
Range	-2 ³¹ ² ³¹ -1
Storage type	RAM
Default value	0

Through internal chip conversion, the pressure value is converted into an analog voltage signal and reflected in a scale of 0-4096.

6.5.7 Pressure trigger settings

The PCSO7xx can set the pressure trigger output, and when the actual pressure value is greater than the set pressure value, the trigger signal output is valid.

Object name	Trigger settings
SDO ID	0x6009
Object type	Record
Storage type	ROM
Number of parameters	2

Subindex 0x01: Triggers polarity setting

Object type	U8, rw
Range	0~1
Default value	0

When set to 0, the trigger polarity is positive and the trigger signal output is high, and when set to 1, the trigger polarity is negative and the trigger signal output is low.

Subindex 0x02: Triggers the pressure value value

Object type	\$32, rw
Range	-2^31~2^31-1
Default value	0

Set the trigger value, which can be saved. When the detected voltage value is less than the set trigger value, the trigger state is set to one.

7 Introduction of the Debug Tool

The PCS07xx can be used for command debugging, IO port setting detection, stepper motor parameter debugging and custom programming through the CQPUSI tool software PUSICAN.

7.1 Installation preparation

Tool software PUSICAN requires CAN adapter (USB2CAN or PCI2CAN) support. Currently, the tool software has supported a wide variety of common USB2CAN adapter on the market. If you need to support other types of adapter, please contact with sales staffs.

7.2 Software installation

7.2.1 Driver installation

Install the driver of adapter, please follow the instructions on the user manual of adapter.

7.2.2 Tool software installation

Debug tool PUSICAN is green free installation software. After download, extract it into a special folder. Double-click the pusican exe, then the software is running.

7.3 Software instructions

7.3.1 Preparation for using

Connect the PCS07xx and CAN adapter to the computer. Then power PMC007CxSxP up. After power up normally, the LED lights will be flashing at 2.5Hz frequency.

7.3.2 Main interface

Double click on the desktop PUSICAN shortcut icon to enter the main interface. As shown in :

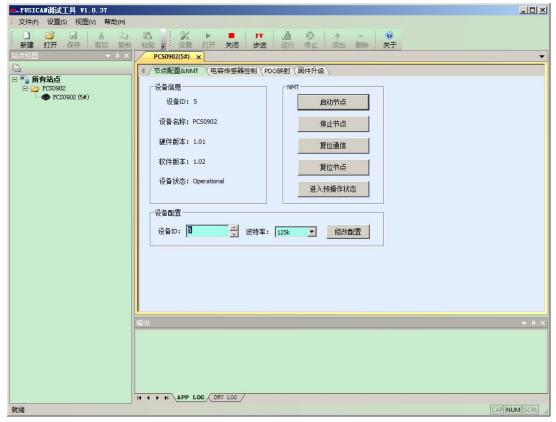


Figure 7-1

In the main interface, click "Settings" icon to select the adapter and baud rate. PCSO7xx controller factory default baud rate is 125kHz. Click "open" icon, debugging tools will boot the adapter scanning site, and all online activity equipment are listed in the left side tree list. Double-click on operation site and the right workspace will display the control interface of the device.

Start node: Make PCS07xx into the operational state.

Stop node: Make PCS07xx into stopped state. The node will not respond to any SD0 command.

Reset communication: The communication parameters take effect immediately by this operation, after SDO modifies the communication parameters.

Reset node: Notify the node reenter power on reset process.

Pre-operation state: In this state, the node waits for the network command of the main station, receives the configuration request of the main station, so it can receive and send all messages except PDO.

7.3.3 Capacitive sensor control

At the main interface, click "capacitance sensor control" to enter the interface. After entering the interface, the software will automatically acquire the capacitance value and display it on the interface. At the same time, the working

pattern, trigger mode and other parameters can be set. As shown in Figure 7-2.

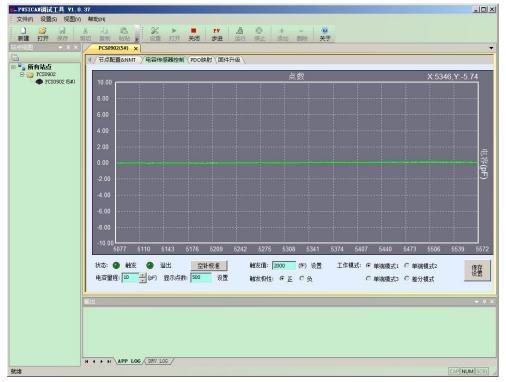


Figure 7-2

7.3.4 PDO mapping

Click "PDO Mapping" on the main interface to enter the interface, after entering the interface, the software will automatically read the current mapping object from the device and display it on the interface, as shown in 7-3.

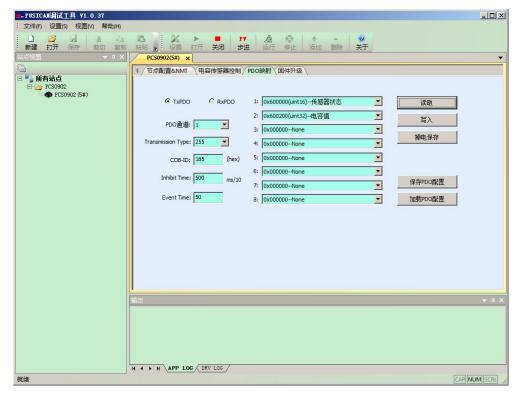


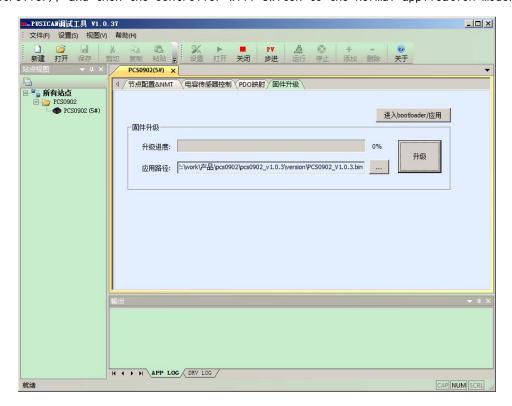
Figure 7-3

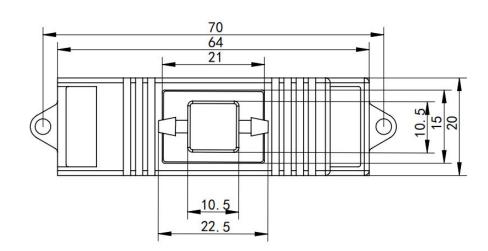
The PCS07xx supports 4 channels of transmit PDO and 4 channels of receive PDO, with up to 8 objects per lane mapped. For details about the parameters, see Section 2.1 in Appendix 2.

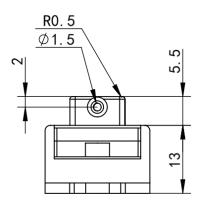
7.3.5 Firmware upgrade

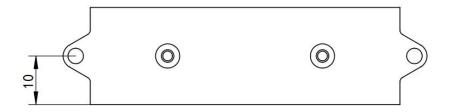
Firmware upgrade of PCS07xx can be carried out in bootloader mode through the CAN bus. In "Firmware upgrade" interface, click "into the bootloader/application", PCS07xx will enter bootloader mode. The node ID and baud rate are set in the application model.

After entering the bootloader mode, LED lights will be double flash. In the "application path" column select the upgrade file, click the "upgrade" button to start upgrading, as shown in Figure 7-4. After firmware upgrade is completed, tool will prompt a dialog box, then you can click on "Enter bootloader/ application" (or repower on the controller), and then the controller will switch to the normal application mode.




Figure 7-4


8 Electrical Characteristics


Parameter	Condition	Min	Typical	Max	Unit
Supply Power Voltage	Normal 25°C	9	12	24	٧
Operation Temperature	12V Input voltage	-20	25	55	°C
Maximum operating current	No trigger case	30	40	50	mA
TR/TN interface low level(Unloaded)	12V Power Voltage	0	0	0	٧
TR/TN interface high level(Unloaded)	12V Power Voltage	4	5	5	٧

9 Dimensions

10 Appendix 1 PCS07xx Object dictionary table

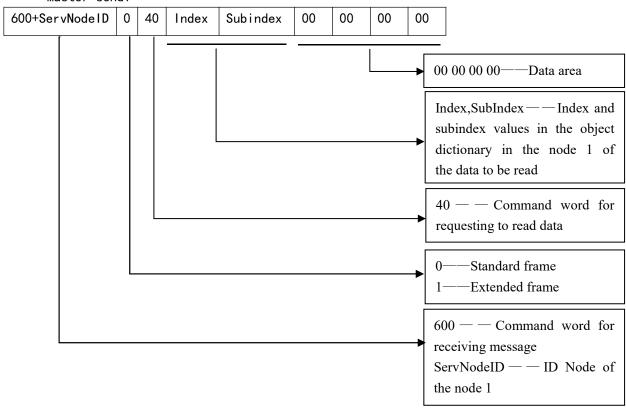
Index	Sub index	Object	Name	Туре	Attr.	PDO	Storage type
1000h		VAR	Device type	UINT32	RO	NO	ROM
1001h		VAR	Error registor	UINT8	RO	Optional	RAM
1002h		VAR	manufacturer status register	UINT32	RO	Optional	RAM
1003h		ARRAY	pre-defined error field				RAM
	0h		number of errors	UINT8		NO	
	1h-7h		standard error field			Optional	
1005h		VAR	COB-ID SYNC	UINT32	RW	NO	ROM
1006h		VAR	communication cycle period	UINT32	RW	NO	ROM
1007h		VAR	synchronous window length	UINT32	RW	Optional	ROM
1008h		VAR	manufacturer device	Visible	const	NO	ROM
			name	String			
1009h		VAR	manufacturer hardware	Visible	const	NO	ROM
			version	String			
100ah		VAR	manufacturer software	Visible	const	NO	ROM
			version	String			
1014h		VAR	COB-ID Emergency	UINT32	RO	NO	ROM
			message				
1015h		VAR	Inhibit Time EMCY	UINT16	RW	NO	ROM
1016h		ARRAY	Consumer Heartbeat Time				ROM
	0h		number entries	UINT8	RO	NO	
	1h-3h		Consumer Heartbeat Time	UINT32	RW	NO	
1017h		VAR	Producer Heartbeat Time	UINT16	RW	NO	ROM
1018h		RECOR	Identity Object				ROM
	0h	D	number of entries	UINT8	RO	NO	
	1h	1	Vendor ID	UINT32	RO	NO	
	2h]	Product code	UINT32	RO	NO	
	3h	1	Revision number	UINT32	RO	NO	
	4h	1	Serial number	UINT32	RO	NO	
1200h		RECOR	Server SDO parameter				ROM
	0h	D	number of entries	UINT8	RO	NO	
	1h		COB-ID Client->Server (rx)	UINT32	RO	NO	
	2h		COB-ID Server -> Client (tx)	UINT32	RO	NO	

	3h		Node-ID of the SDO	UINT32	RW	NO	
			client				
1280h		RECOR	Client SDO parameter				RAM
	0h	D	number of entries	UINT8	RO	NO	
	1h		COB-ID Client->Server	UINT32	RW	NO	
			(tx)				
	2h		COB-ID Server -> Client	UINT32	RW	NO	
			(rx)				
	3h		Node-ID of the SDO	UINT32	RW	NO	
			server				
1400h		RECOR	receive PDO parameter				ROM
	0h	D	largest sub-index	UINT8	RO	NO	
			supported				
	1h		COB-ID used by PDO	UINT32	RW	NO	
	2h		transmission type	UINT8	RW	NO	
	3h		inhibit time	UINT16	RW	NO	
	4h		compatibility entry	UINT8	RW	NO	
	5h		event timer	UINT16	RW	NO	
1401h		RECOR	receive PDO parameter				ROM
	0h	D	largest sub-index	UINT8	RO	NO	
			supported				
	1h		COB-ID used by PDO	UINT32	RW	NO	
	2h		transmission type	UINT8	RW	NO	
	3h		inhibit time	UINT16	RW	NO	
	4h		compatibility entry	UINT8	RW	NO	
	5h		event timer	UINT16	RW	NO	
1402h		RECOR	receive PDO parameter				ROM
	0h	D	largest sub-index	UINT8	RO	NO	
			supported				
	1h		COB-ID used by PDO	UINT32	RW	NO	
	2h		transmission type	UINT8	RW	NO	
	3h		inhibit time	UINT16	RW	NO	
	4h		compatibility entry	UINT8	RW	NO	
	5h		event timer	UINT16	RW	NO	
1403h		RECOR	receive PDO parameter				ROM
	0h	D	largest sub-index	UINT8	RO	NO	
			supported				
	1h		COB-ID used by PDO	UINT32	RW	NO	
	2h]	transmission type	UINT8	RW	NO	
	3h]	inhibit time	UINT16	RW	NO	
	4h		compatibility entry	UINT8	RW	NO	
	5h		event timer	UINT16	RW	NO	

1600h		RECOR	receive PDO mapping				ROM
	0h	D	number of mapped	UINT8	RO	NO	
			application objects in				
			PDO				
	1h-8h		PDO mapping for the nth	UINT32	RW	NO	
			application object to be				
			mapped				
1601h		RECOR	receive PDO mapping				ROM
	0h	D	number of mapped	UINT8	RO	NO	
			application objects in				
			PDO				
	1h-8h		PDO mapping for the nth	UINT32	RW	NO	
			application object to be				
			mapped				
1602h		RECOR	receive PDO mapping				ROM
	0h	D	number of mapped	UINT8	RO	NO	
			application objects in				
			PDO				
	1h-8h		PDO mapping for the nth	UINT32	RW	NO	
			application object to be				
			mapped				
1603h		RECOR	receive PDO mapping				ROM
	0h	D	number of mapped	UINT8	RO	NO	
			application objects in				
			PDO				
	1h-8h		PDO mapping for the nth	UINT32	RW	NO	
			application object to be				
			mapped				
1800h		RECOR	transmit PDO parameter				ROM
	0h	D	largest sub-index	UINT8	RO	NO	
			supported				
	1h		COB-ID used by PDO	UINT32	RW	NO	
	2h		transmission type	UINT8	RW	NO	
	3h		inhibit time	UINT16	RW	NO	
	4h		reserved	UINT8	RW	NO	
	5h		event timer	UINT16	RW	NO	
1801h		RECOR	transmit PDO parameter				ROM
	0h	D	largest sub-index	UINT8	RO	NO	
			supported				
	1h		COB-ID used by PDO	UINT32	RW	NO	
	2h		transmission type	UINT8	RW	NO	
	3h		inhibit time	UINT16	RW	NO	
ı	4h		reserved	UINT8	RW	NO	

	5h		event timer	UINT16	RW	NO	
1802h		RECOR	transmit PDO parameter				ROM
	0h	D	largest sub-index	UINT8	RO	NO	
			supported				
	1h		COB-ID used by PDO	UINT32	RW	NO	
	2h		transmission type	UINT8	RW	NO	
	3h		inhibit time	UINT16	RW	NO	
	4h		reserved	UINT8	RW	NO	
	5h		event timer	UINT16	RW	NO	
1803h		RECOR	transmit PDO parameter				ROM
	0h	D	largest sub-index	UINT8	RO	NO	
			supported				
	1h	1	COB-ID used by PDO	UINT32	RW	NO	
	2h		transmission type	UINT8	RW	NO	
	3h		inhibit time	UINT16	RW	NO	
	4h		reserved	UINT8	RW	NO	
	5h		event timer	UINT16	RW	NO	
1a00h		RECOR	transmit PDO mapping				ROM
	0h	D	number of mapped	UINT8	RO	NO	
			application objects in				
			PDO				
	1h-8h		PDO mapping for the	UINT32	RW	NO	
			n-th				
			application object to be				
			mapped				
1a01h		RECOR	transmit PDO mapping				ROM
	0h	D	number of mapped	UINT8	RO	NO	
			application objects in				
			PDO				
	1h-8h		PDO mapping for the	UINT32	RW	NO	
			n-th				
			application object to be				
			mapped				
1a02h		RECOR	transmit PDO mapping				ROM
	0h	D	number of mapped	UINT8	RO	NO	
			application objects in				
	11 01	1	PDO	LIDITO	DW	NO	
	1h-8h		PDO mapping for the	UINT32	RW	NO	
			n-th				
			application object to be				
1a03h		RECOR	mapped transmit PDO manning				ROM
100311		D	transmit PDO mapping	IIINITQ		-	KOM
	0h	۳ ا	number of mapped	UINT8	RO	NO	

		1	T	1	ı	1	1
			application objects in				
			PDO				
	1h-8h		PDO mapping for the	UINT32	RW	NO	
			n-th				
			application object to be				
			mapped				
2002h		VAR	Node ID	UINT8	RW	NO	ROM
2003h		VAR	Baud rate	UINT8	RW	NO	ROM
6000h		VAR	Sensor status word	UINT16	RW	Optional	RAM
6001h		VAR	Controller control word	UINT16	RW	Optional	RAM
6002h		VAR	Capacitance value	INT32	RW	NO	RAM
6003h		VAR	Working pattern	UINT8	RW	NO	RAM
6005h		RECOR	Trigger setting	UINT8	RW	NO	ROM
	0h	D	Number of parameters	UINT8	RO	NO	ROM
	1h		Trigger output polarity	UINT8	RW	NO	RAM
	2h		Trigger value	INT32	RW	NO	RAM
6008h		VAR	电压值	INT32	RW	NO	RAM
6009h		RECOR	电压触发设置	UINT8	RW	NO	ROM
		D					
	0h		参数个数	UINT8	RO	NO	ROM
	1h		触发输出极性	UINT8	RW	NO	RAM
	2h		电压触发值	INT32	RW	NO	RAM


11 Appendix 2 CANOPEN Communication example

11.1 SDO Reading and writing example

11.1.1 SDO Read

11.1.1.1 Data frame forma

Master send:

Slave response:

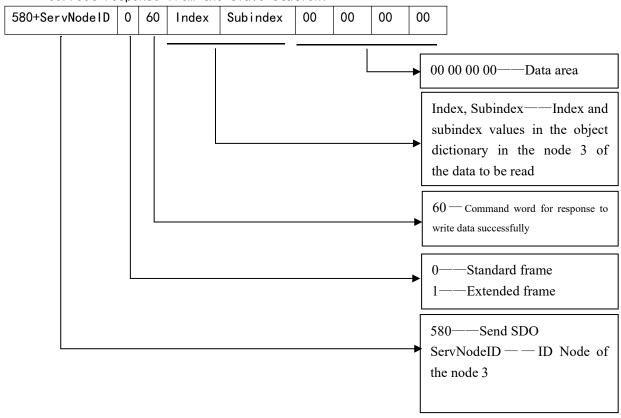
When the data length is 1 byte								
580+ServNodeID	0	4F	Index	Subindex	d0	0	0	0
When the data length is 2 bytes								
580+ServNodeID 0 4B Index Subindex d0 d1 0 0						0		
	Wher	the	data leng	th is 3 byte	s			
580+ServNodeID	0	47	Index	Subindex	d0	d1	d2	0
When the data length is 4 bytes								
580+ServNodeID	580+ServNodeID 0 43 Index Subindex d0 d1 d2 d3							

11.1.1.2 SDO Read example

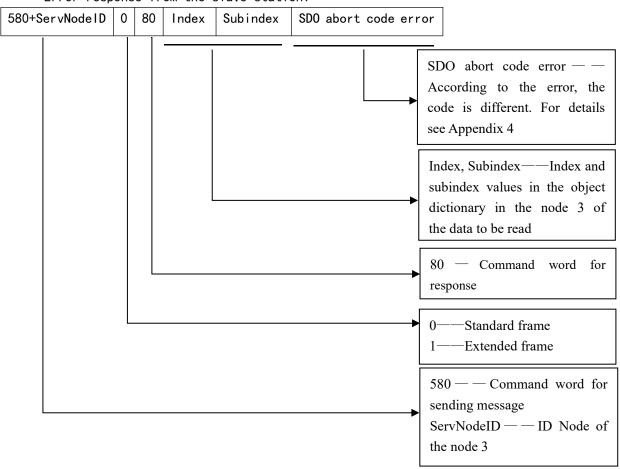
Master send: 605 40 02 60 00 00 00 00 00 Slave response:585 43 02 60 00 FC 5E 00 00

The master initiated a read request to the device whose node ID is 5. The index and subindex of the request are 0x6002 and 0x00 respectively, which corresponds to capacitance value in the PCSO7xx Object Dictionary. The slave response 43 indicates that the parameter length is four byte, the data is 0x5EFC, which indicates that the capacitance is 24316fF.

11.1.2 SDO Write in


11.1.2.1 Data frame format

Master send:


When the data length is 1 byte								
600+ServNodeID	0	2F	Index	Subindex	d0	0	0	0
When the data length is 2 byte								
600+ServNodeID	0	2B	Index	Subindex	d0	d1	0	0
	Whe	n the	data ler	ngth is 3 by	/te			
600+ServNodeID	0	27	Index	Subindex	d0	d1	d2	0
When the data length is 4 byte								
600+ServNodeID	0	23	Index	Subindex	d0	d1	d2	d3

Correct response from the slave station:

Error response from the slave station:

Note: Abort code error SDO returns the corresponding parameters according to the specific error. The specific parameters are shown in $\frac{Appendix 4}{A}$.

11.1.2.2 SDO Write example

Master send: 605 2F 03 20 00 07 00 00 00 Slave response:585 60 03 20 00 00 00 00 00

The master initiated a write request to the device whose node ID is 5. The index and subindex of the request are 0x2003 and 0x00 respectively, which corresponds to the baud rate setting parameter in the PCS07xx Object Dictionary, and the write data is 7, which indicates the baud rate is set to 800Kbit/s. The slave response 60 indicates the data is written successfully.

12 Appendix 3 PDO configuration example

12.1 PDO overview

PDO communication is based on the Producer/Consumer model, which is mainly used to transfer real-time data. The node which generated data puts the data with its own node ID on the bus, and nodes which need the data can be configured to receive the data sent by the node. The transmission of PDO is triggered by the event, which can represent a change in a PDO variable and can also be a time of expiration or a specific message to be received. Process data is transmitted directly in an CAN message without a protocol header file. The length of a PDO is between 0 and 8 bytes.

PDOs is included in the mapping parameter and communication parameter. PMC007xx supports 4 PDOs.

12.1.1 The structure PDO——Mapping parameter

A PDO in the Object Dictionary consists of adjacent items. The mapping parameters define the connection of these items. A mapping parameter defines a data source through an index, a subindex, and a number of bits.

For example:

Index	Sub-index	Object Data	Description
0x1A00	0	4	Number of mapped entries
	1	0x20000310	The entry at index 0x2000, sub-index 3, with a length of 16 bit, is mapped to bytes 0 and 1 within the CAN message.
	2	0x20000108	The entry at index 0x2000, sub-index 1, with a length of 8 bit, is mapped to byte 2 within the CAN message.
		,	

Table 1: Example for mapping parameters for the first TPDO

A CAN message has not more than 8 bytes. This means that there can send 8 object items at most when there is only one PDO used.

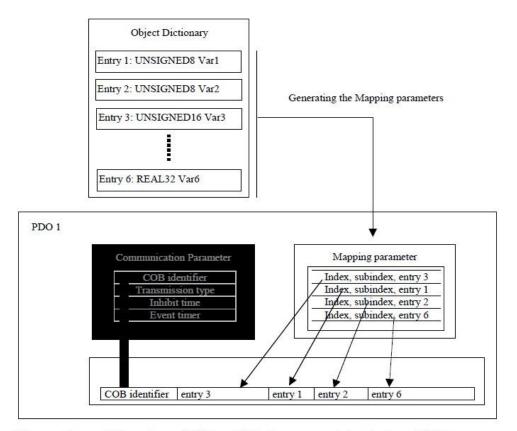


Figure 3: Mapping of Object Dictionary entries into a PDO

12.1.2 The structure PDO——Communication parameter

In order to transmit a PDO, the communication parameter defines the nature of the transport and the CAN identifier.

Index	Sub-index	Object Data	Description
1800h	0	Number on entries	
	1	COB-ID	CAN identifier for the PDO
	2	Transmission Type	transmission type of the PDO
	3	Inhibit Time	minimum inhibit time for a TPDO
	4	reserved	reserved
	5	Event Time	maximum time between two TPDOs

Table 4: Communication parameter for the first TPDO

PDO communication parameter is an item in the Object Dictionary.

(RPDOs: index 0x1400-0x15FF, TPDOs: 0x1800-0x19FF)

If allowed, the communication parameter can be modified by the CAN with the help of the data service object.

12.1.2.1 COB-ID(CAN identifier. Subindex 1)

COB-ID as proof of identity, the priority of PDO is before the bus access. For

every CAN message, there is only one sender (producer). However, it allows multiple recipients (consumers) for the existing message.

Bit	31	30	29	28 – 11	10 - 0
11-bit-ID	0/1	0/1	0	0000000000000000000	11-bit identifier
29-bit-ID	0/1	0/1	1	29-bit identifier	·

Table 5: Structure of a COB-ID for PDOs

The thirtieth bit is 0, which indicates that a remote transmission request (RTR) is allowed for this PDO.

PDO COB-ID distribution:

PDO1(send)	181H-1FFH
PDO1(receive)	201H-27FH
PDO2(send)	281H-2FFH
PDO2(receive)	301H-37FH
PDO3(send)	381H-3FFH
PDO3(receive)	401H-47FH
PDO4(send)	481H-4FFH
PDO4(receive)	501H-57FH

12.1.3 PDO Trigger mode

Sending of PDO can be triggered by the following methods:

- 1) Event trigger.
- 2) Time trigger.
- 3) Single query.
- 4) Synchronization.

When only use event to trigger the sending of PDO, once the event process is changed, the PDO is sent. It may bring very serious consequences, that is, when the frequency of a process data change is very high, the PDO is sent uninterruptedly, that will cause the message of other nodes is not sent out, which seriously affect the efficiency of the bus.

CANopen uses the "Inhibit time "mechanism to solve this problem. Inhibit time is a configurable time period in units of 100 us. The same PDO sends at least this time interval, so it can determine the maximum transmission frequency of an event triggered PDO.

Generally, the sending of PDO can be triggered by a combination of any of the trigger mode. But the most common way is to combine the Event trigger and Time trigger. In the case of single event trigger, since process data did not change for a long time (such

as temperature variables), the PDO have not been triggered for a long time. It will affect the nodes just joined the network. So if plus time triggered mode, PDO is forced to send again within the stipulated time. For example, for a PDO, the inhibition time is configured as 5, event timer is configured as 250, so the PDO can be sent when process data changes. The minimal interval of sending is 5ms, on the other hand, no matter whether there is no change in the data, the PDO will be sent every 250ms.

Configuration of PDO trigger mode is realized through setting subindex 2 in the Object Dictionary of PDO communication parameter. The range of the subindex is 0-255 The following lists the different values for different trigger modes.

0: PDO is sent after SYNC is received, but not cycle.

1-240: PDO is sent periodically after SYNC is received . The value is the number of SYNC between two send of PDO .

255: Event trigger.

12.2 PDO Configuration example

PCS07xxx supports PD0 mapping by SD0 configuration. To configure the GP10 value to be TPD01 as an example, the SD0 is sent as:

Set the communication COB-ID to be 187, that is, the device whose node ID is 7 receives the PDO

Master send: 605 23 00 18 01 85 01 00 80

Clear the 1A00 configuration information

Master send: 605 2F 00 1A 00 00 00 00 00

Event trigger is set

Master send: 605 2F 00 18 02 FF 00 00 00

Set Inhibit time as 5ms

Master send: 605 2B 00 18 03 32 00 00 00

Set Event time as 1000ms

Master send:605 2B 00 18 05 E8 03 00 00

Set the map parameters

Master send:605 23 00 1A 02 20 00 02 60 $\,$

Set the number of map entries to be 1

Master send: 605 2F 00 1A 00 01 00 00 00

Send the communication message again

Master send:605 23 00 18 01 85 01 00 00

After the configuration is completed, PCS07xx will send PD0 message every 1s. The message contains capacitance value information.

13 Appendix 4 SDO abort code error

Abort code	Code function description
05030000	There is no alternation of trigger bits
05040000	SDO protocol timeout
05040001	Illegal or unknown Client/Server command word
05040002	Invalid block size (only Block Transfer mode)
05040003	Invalid serial number (only Transfer Block mode)
05030004	CRC error (only Transfer Block mode)
05030005	Out of memory
06010000	Access is not supported for the Object.
06010001	Try to read write-only objects
06010002	Try to write read-only objects
06020000	Object does not exist in the Object Dictionary
06040041	Object cannot be mapped to PDO
06040042	The number and length of the mapped object exceeds the PDO length
06040043	General parameters are not compatible
06040047	General equipment is not compatible
06060000	Hardware error causes the object access failure
06060010	Data type does not match, and service parameter length does not match
06060012	Data type does not match, the service parameter is too large
06060013	Data type does not match, the service parameter is too small
06090011	The subindex does not exist
06090030	Beyond the range of the parameter values (when write access)
06090031	Parameter value is written too large
06090032	Parameter value is written too small
06090036	The maximum value is less than the minimum value
08000000	General error
08000020	Data cannot be transferred or saved to applications
08000021	Due to local control, data cannot be transferred or saved to
	applications
08000022	Due to the current device status, data cannot be transferred or saved
	to applications
08000023	The dynamic condition of Object dictionary generates error or Object
	Dictionary does not exist