[image: image28.jpg]0z'9l

9

0571

 PMC006C3 Miniature Integrated Stepper Motor Controller

[image: image1.jpg]PUSIROBOT

CQPUSI Robot control system

	User Manual

	PMC006C3 Series

	Miniature Integrated Stepper Motor Controller

[image: image2.png]

Version Control

Update Records
	Date
	Author
	Version
	Remark

	
	
	
	

	2024/7/15
	Tony
	V1.0.0
	Initial

	2025/7/1
	Liu
	V1.0.1
	

Catalog
61 Introduction

61.1 Statement of intellectual property right

61.2 Disclaimer

72 Overview

72.1 General Description

72.2 Features

82.3 Production & Ordering Information

93 Connector Description

93.1 Motor connection J7

93.2 Power connection J1

103.3 Solenoid valve connection J2

103.4 J3-communication port 1

103.5 J4-communication port 2

103.6 J5-limit connection 1

113.7 J6-limit connection 2

113.8 J9-encoder connection

113.9 CAN network connection

123.10 Limit switch connection

133.11 Mechanical switch connection

133.12 Analog Adjusting Speed /Position

143.13 Solenoid valve/brake connection

143.14 Drive mode selection

154 CANopen communication

154.1 CANopen introduction

154.2 CAN frame structure

154.3 CAN communication configuration

165 Detailed registers

165.1 System configuration

165.1.1 Node ID

165.1.2 Baud rate

165.1.3 Group ID

16This object needs to be configured when using the synchronous run function.

165.1.4 Device node name

175.1.5 Hardware version

175.1.6 Software version

175.1.7 System control

175.2 Condition monitoring

175.2.1 Motor error status

185.2.2 Controller status

185.3 Micro stepping/Current

185.3.1 Micro stepping

195.3.2 Maximum phase current(Operating current)

195.4 Working mode switching

205.5 Position mode

205.5.1 Position mode rotating direction

205.5.2 Position mode start speed

215.5.3 Position mode stop speed

215.5.4 Position mode acceleration coefficient

215.5.5 Position mode deceleration coefficient

225.5.6 Position mode operating speed

235.5.7 Position mode relative displacement command

235.5.8 Position mode absolute displacement command

245.6 Stop stepper command

245.7 Commonly used parameters

245.7.1 Motor position

245.7.2 Zero Calibration(absolute value encoder closed loop)

255.7.3 Encoder position (absolute value encoder closed loop)

255.7.4 Current reduction

255.7.5 Motor enable

265.7.6 Stall stop setting(open-loop)

265.7.7 Stall parameters(open-loop)

275.7.8 Real-time speed(Closed-loop)

275.7.9 Temperature threshold

275.7.10 Motor wiring configuration

285.7.11 Automatic power-down save enabled

285.8 External emergency stop

285.8.1 External emergency stop enabled

285.8.2 The trigger mode of external emergency stop

295.8.3 Debouncing delay

295.9 General IO port

295.9.1 General IO port setting

305.9.2 General IO port value

315.10 Closed-loop parameter

315.10.1 Encoder resolution

315.10.2 KP parameter

325.10.3 KI parameter

325.10.4 KD parameter

325.10.5 Pre-filtering parameter

325.10.6 Post-filtering parameter

325.10.7 Stall length parameter

335.11 High-speed torque mode switch

335.12 Open loop application switch

345.13 PP mode

345.13.1 PP mode parameter 1

355.13.2 PP mode parameter 2

365.13.3 PP model work timing

395.14 Synchronous position Motion mode

395.14.1 SP speed

395.14.2 SP position

395.14.3 Synchronous start and stop

405.15 Analog positioning

405.15.1 Analog positioning enabled

405.15.2 Analog initial AD code

415.15.3 Analog adjustment interval

415.15.4 Analog regulating trigger value

415.15.5 Minimum value of analog position

415.15.6 Maximum value of analog position

415.16 offline programming

415.16.1 Offline programming parameter 1

425.16.2 Offline programming parameter 2

435.17 Brake control

435.18 Analogue input read

435.19 Step notification

445.20 Low-voltage protection

445.20.1 Low-voltage protection control word

445.20.2 Offline voltage threshold

455.20.3 Brake voltage threshold

456 User-defined programs

457 Tool software operation introduction

457.1 Graphic programming support

467.2 Scripting language support

468 Electrical Characteristics

479 Dimensions

4810 Appendix 1 PMC006C3 Object dictionary table

56Analog initial AD code

5711 Appendix 2 CANopen Communication Examples

5711.1 SDO Read/Write Examples

5711.1.1 SDO Read

5711.1.1.1 Data frame format

5811.1.1.2 SDO Read example

5811.1.2 SDO Write in

5811.1.2.1 Data frame format

5911.1.2.2 SDO Write example

6012 Appendix 3 PDO configuration example

6012.1 PDO overview

6012.1.1 The structure PDO——Mapping parameter

6112.1.2 The structure PDO——Communication parameter

6212.1.3 PDO Trigger mode

6312.2 PDO Configuration example

6413 Appendix 4 SDO abort code error

Introduction

Statement of intellectual property right

PMC006C3 series controller has been applied for the following national patent:

• Controller scheme and method have been applied for the protection of the invention patent.

• Controller circuit has been applied for the protection of utility model patent.
• Controller appearance has been applied for the protection of appearance patent protection.
PMC006C3 series controller has embedded firmware code, it would be considered as a violation of intellectual property protection act and regulations that any behavior of trying to destroy the function of firmware code protection. If this behavior acquires the software or other achievements of intellectual property protection without authorization of CQPUSI, CQPUSI has the right to stop such behavior by filing a lawsuit according to the act.
Disclaimer

The using method of the device and other content in the description of this manual is only used to provide convenience for you, and may be update in futu-re version. To ensure the application conforms to the technical specifications is the responsibility of your own. CQPUSI does not make any form of statement

or guarantee to the information, which include but not limited to usage, quality, performance, merchantability or applicability of specific purpose. CQPUSI is not responsible for these information and the consequences result caused by s-uch information. If the CQPUSI device is used for life support and/or life saf-ety applications, all risks are borne by the buyer. The buyer agrees to protect the CQPUSI from legal liability and compensation for any injury, claim, lawsu-it or loss caused by the application.

Overview
General Description
PMC006C3 is a kind of miniature integrated stepper motor microstepping controller, which can be directly installed in the rear of NEMA17/23 series stepper motor. The PMC006 series controllers are available in a variety of models based on CAN bus control and different current levels. With the PMC006C3 stepper motor controller, it is easy to implement an industrial control network system with up to 120 nodes, and encoder-based closed-loop control can be realized according to user requirements. PMC006C3 adopts the industry standard CANOPEN DS301 control protocol, which is suitable for a variety of high-precision, wide-range industrial applications.
Features
Wide range of 9-36V single voltage supply

Output current 0.2A ~ 3A. Adjustable phase current by commands

Automatic control of S curve acceleration and deceleration

Support Position/Velocity/PP/PV/SP/Analog Position/Analog velocity mode etc. motion mode

Support 200-8000PPR incremental encoder; Supports single-turn and multi-turn absolute encoders;

Support automatic deviation correction;

Support normal open-loop mode, normal closed-loop mode, closed-loop high-speed torque mode

Electromagnetic brake control function
Sensor-less stall detection
LUA script programming support

Power-down detection

Support 0/2/4/8/16/32/64/128 microstepping resolution

Suitable for 4/6/8 lines of 2 phase stepper motor

Automatic over-temperature, over-current, under-voltage and overvoltage protection

Analog Input Application (Special edition)
Hot-plug protection, power misconnection protection
Miniature size 42mmx42mmx18mm
Production & Ordering Information

In order to serve you quicker and better, please provide the product number in following format when ordering PMC006C3：
	PMC
	006
	C
	3
	E
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	Peak Current：3=3A

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	Bus： CAN Bus

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	Model

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	PUSI Motor Controller

	
	
	
	
	
	
	
	
	
	

Remark:

E：Closed-loop type.

Connector Description
[image: image17.jpg]PUSIROBOT

[image: image18.png]

[image: image19.jpg]J2

Ll

o

i

et

D r PUS | ROBOT

yaa

O

p—

r UHHHHHEHEHHH
HHHEEHHHHT
3 2

E O

J3

J4

Jé

J5

Motor connection J7
	Pin no
	1
	2
	3
	4

	Designator
	M10
	M11
	M20
	M21

Description:

M10: Motor A+ phase M11: Motor A- phase

M20: Motor B+ phase M21: Motor B- phase

WARNING: The wrong phase wire of the power supply or motor can permanently damage the controller (For closed-loop, correspond to the red, blue, black, and green wiring)

Power connection J1
	Pin no:
	1
	2

	Designator
	GND
	VCC

Description:

VCC：Supply voltage, 9-36V.

GND：Supply voltage ground.

Solenoid valve connection J2
	Pin no:
	1
	2
	3

	Designator
	Coil-
	Coil+
	NC

Description:

Coil+：Solenoid valve/brake positive control terminal, its voltage is equal to the voltage of power supply

Coil-：Solenoid valve/brake negative control terminal;

NC: Reserved port, no function

Warning: The Coil pin is the same as the supply voltage, be careful not to short with DVDD, GND, or other signal lines

J3-communication port 1
	Pin no:
	1
	2
	3

	Designator
	GND
	CANH
	CANL

Description:

CANH: Connect the transceiver interface of the CAN module

CANL: Connect the transceiver interface of the CAN module

GND: Controller digital ground

A single unit only connected to one communication port, when networking, directly plug in the access bus by using communication port

J4-communication port 2
	Pin no:
	1
	2
	3

	Designator
	GND
	CANH
	CANL

Description:

CANH: Connect the transceiver interface of the CAN module

CANL: Connect the transceiver interface of the CAN module

GND: Controller digital ground

J5-limit connection 1
	Pin no:
	1
	2
	3
	4

	Designator
	DVDD
	GND
	EXT1-
	EXT1+

Description:

DVDD：Controller voltage output(+5V). Maximum current is 100mA.

GND：Controller digital ground.

EXT1+：External limit switch signal input 1 positive, 3~5.5V.

EXT1-：External limit switch signal input 1 negative

J6-limit connection 2
	Pin no:
	1
	2
	3
	4

	Designator
	OUT-VDD
	GND
	EXT2-
	EXT2+/AN

Description:

OUT-VDD: GPIO8 controlled 5V output, 50mA max

GND：Controller digital ground.

EXT2-：External limit switch signal input 2 negative
EXT2+：External limit switch signal input 2 positive, 3~5.5V.

AN: Can be used as an analog input interface in the special version, input voltage 0-3.3V.

Can be 0-24V (or 10mA) input in the special version.

Note: The analog input and the second limit port can only be realized by selecting one of the two functions.

J9-encoder connection
	Pin no:
	1
	2
	3
	4
	5

	Designator
	DVDD
	GND
	A
	B
	Z

Description:

DVDD：Controller voltage output(+5V). Maximum current is 100mA.

GND：Controller digital ground.

A: Encoder phase A signal

B: Encoder phase B signal

Z: Encoder phase Z signal
CAN network connection
Transmission distances of up to 5,000 meters can be achieved using a CAN bus connection. Figure 3-4 provides a network solution consisting of multiple PMC006C3 controllers connected by a CAN bus, which is compatible with CAN2.0A and CAN2.0B, and can connect up to 127 nodes.

Note: It is recommended to use a 120 ohm shielded twisted pair dedicated to the CAN bus and to connect a 120 ohm termination resistor at each end of the twisted pair.

PMC006C3 supports the standard CANopen DS301 protocol, CQPUSI provides a special debugging tool software for PMC006C3 networking, PUSICAN, which currently supports a variety of mainstream brands of USB2CAN modules on the market.

Limit switch connection

The PMC006C3 controller has two special pins EXT1/EXT2 for connecting external limit switches, the trigger mode of each pin can be selected in real time through the command, the factory default value is valid for the falling edge trigger, at this time, the corresponding EXT1/EXT2 is from high level to low level jump, there is optodephone isolation inside the controller, when the optocoupler input positive and input negative correctly form a loop, and are in the normal conduction state, then EXT1/EXT2 will change from high level to low level, Figure below.

[image: image20.jpg]J7

[image: image21.png]

[image: image3.png]

There are two types of common external limit switches, one is a four-wire through-beam optocoupler without an internal circuit, and the other is a three-wire or five-wire optocoupler with an internal circuit, which is divided into PNP type and NPN type. And there is a difference between light conduction and shading conduction. For different types of optocouplers, you can refer to the following wiring methods:

NPN type three-wire optocoupler

When the light is in, it is turned on and the occlusion is triggered, and the rising edge trigger mode is configured, as shown in Figure below. Note that in this case, EXT1/EXT2 both need the OUT-VDD pin of J6 as the power supply. If the DVDD pin of J5 is used, an external current-limiting resistor is required to avoid burning the light-emitting diode of the optocoupler.

[image: image4.png]EXT- ExT+ GND out-vdd

NPN type three-wire optocoupler

When entering the light, it is turned on and the occlusion is triggered, and it is configured as the rising edge trigger mode

[image: image5.png]Ughtingicator
! 1/ red) |

EXT- ExT+ GND 5V

PNP type three-wire optocoupler

When entering the light, it is turned on and the occlusion is triggered, and it is configured as the rising edge trigger mode

[image: image6.png][o

1/ o)

EXT+ GND 45v

EXT-

Mechanical switch connection

When using mechanical button switch or relay contact as a limit, it should be directly connected, EXT access DVDD, EXT- access GND, usually not conduction, press on, configure as the descending edge trigger mode. As shown in the figure below.

[image: image7.png]DVDD

EXT+

[image: image8.png]GND

Analog Adjusting Speed /Position
In the special version, the PMC006C3 controller can use the analog speed regulation function and the analog positioning function in offline operation mode. In this case, the AN pin is used as an analog input port, so please contact sales in advance if you need to purchase it.

In offline mode, the AN pin is used as an analog input port in this application, which can be directly connected to an external input voltage in the range of 0~3.3V. When using PLC or other industrial control equipment to output 4~20mA or 0-24V analog control, special instructions are required to distinguish the version.

Analog speed regulation: Set a speed range, the minimum value corresponds to the input minimum value, and the maximum speed value corresponds to the input maximum value. By adjusting the input value, the motor rotates at the corresponding speed.

Analog positioning: Set a position range, the minimum value of the position corresponds to the minimum value of the input, and the maximum value of the position corresponds to the maximum value of the input. The current position of the motor is adjusted to change the input value so that the motor stops at the specified position. Values such as speed are fixed when set.

Solenoid valve/brake connection

The PMC006C3 controller supports direct control of inductive loads such as solenoid valves, solenoids, solenoid brakes, and DC motors. As shown in the figure below, the load can be connected to the Coil and Coil- pins on the controller J1. The output voltage is the same as the input power supply voltage of the controller, and the output current is up to 800mA, in order to reduce the working temperature of the load coil, the controller supports PWM dynamic voltage adjustment function, and the user can modify the output voltage in real time through instructions.

[image: image9.png]Coil-

PV

Drive mode selection
1. Normal open-loop/ordinary closed-loop mode. The applicable speed range is 10-1200RPM;

2. Closed-loop high-speed torque mode, by modifying the value switch of the 0x6015, when using the mode, the controller will automatically set the microstepping, which cannot be changed manually, the unit of the acceleration and deceleration running parameters is changed, the applicable speed range is 1000-5000RPM, with automatic deviation correction function, default mode.

3. Analog speed regulation/analog positioning mode, you need to use offline programs and analog input ports together.
CANopen communication

CANopen introduction

 CAL provides all network management services and messaging protocols, but does not define the content of the object or the type of object being communicated (it only defines how, not what), which is where CANopen comes in. CANopen is developed on the basis of CAL, using a subset of CAL communication and service protocols to provide an implementation of a distributed control system. CANopen allows the nodes to be scaled at will: simple or complex, while ensuring the interoperability of the network nodes.

The core concept of CANopen is the Object Dictionary (OD), which is also used in other fieldbus (Profibus, Interbus-S) systems. CANopen communication provides access to all parameters of the drive via the Object Dictionary (OD). Note: The object dictionary is not part of the CAL, but is implemented in CANopen, and the PMC006C3 supported object dictionary is shown in Appendix I.

The CANopen communication model defines the following types of messages (communication objects):
	Abbreviation
	Full name
	Description

	SDO
	Service Data Object
	Used for non-time critical data, such as parameters.

	PDO
	Process Data Object
	Used to transfer time critical data(Setting values, Control word, status information, etc.)

	SYNC
	Synchronization Message
	Used to synchronize CAN nodes.

	EMCY
	Emergency Message
	Used to transport alarm event of a driver.

	NMT
	Network Management
	Used for CANopen network management.

	Heartbeat
	Error Control Protocol
	Used for monitoring the life status of all nodes.

CAN frame structure
 CAN Data is transmitted between the host (controller) and the bus node through the data frame. The following table is the structure of the data frame.
	Header
	Arbitration domain
	Control domain
	Data domain
	Check field
	Response domain
	Tail frame

	
	COB-ID(communication object identifier)
	RTR(remote request)
	
	
	
	
	

1bit 11 or 29 bits 1bit 6bits 0~8byte 16bits 2bits 7bits
CAN communication configuration
PMC006C3 factory default settings: node ID is 3/5, the baud rate is 125Kbit/s. The user can modify the settings by supporting the CANOPEN master debugging tool.

Detailed registers

System configuration
Node ID

	Object name
	Node ID

	SDO ID
	0x2002

	Object type
	U8,rw

	Range
	1-127

	Storage type
	ROM

	Default value
	3/5

Baud rate
	Object name
	Baud rate

	SDO ID
	0x2003

	Object type
	U8,rw

	Range
	0,1,2,3,4,5,6,7,8

	Storage type
	ROM

	Default value
	4

Relationship between each index and the baud rate is as follows:

0：20Kbit/s

1：25Kbit/s

2：50Kbit/s

3：100Kbit/s

4：125Kbit/s

5：250Kbit/s

6：500Kbit/s

7：800Kbit/s

8：1000Kbit/s
Group ID

	Object name
	Group ID

	SDO ID
	0x2006

	Object type
	U8,rw

	Range
	1-127

	Storage type
	ROM

	Default value
	0

 This object needs to be configured when using the synchronous run function.
Device node name
	Object name
	Device node name

	SDO ID
	0x1008

	Object type
	string,ro

	Range
	-

	Storage type
	ROM

	Default value
	-

Hardware version
	Object name
	Hardware version

	SDO ID
	0x1009

	Object type
	string,ro

	Range
	-

	Storage type
	ROM

	Default value
	-

Software version
	Object name
	Software version

	SDO ID
	0x100A

	Object type
	string,ro

	Range
	-

	Storage type
	ROM

	Default value
	-

System control
	Object name
	System control

	SDO ID
	0x2007

	Object type
	U8,ro

	Range
	1，2，3

	Storage type
	RAM

	Default value
	-

System control values are defined as follows:

1: Jump to bootloader

2: Save Object Dictionary parameters(i.e. power down save command)

3: Reset factory settings

Note: the Storage type in the Object Dictionary which is ROM parameter is temporarily stored in memory after written by SDO. If you need to keep it permanently, you need to perform power down save operation for the Object Dictionary parameter.

Condition monitoring

Motor error status
	Object name
	Error status

	Instruct address
	0x6000

	Object type
	U8,rw

	Range
	bit

	Storage type
	RAM

	Default value
	0

Driver state are defined as follows:
Bit0：OTS, over temperature shutdown

Bit1: AOCP, motor over-current

Bit2: BOCP, magnetic core position error
Bit3: APDF, Wrong direction of rotation when facing magnetism

Bit4: BPDF, Wrong rotation angle when facing magnetism

Bit5: UVLO, low supply voltage warning

Bit6: SERR, encoder packet error

Bit7: EERR, encoder position error
Clear the corresponding error state by writing 1 to the corresponding bit, for example, write 18 00 00 00 to clear the flags of bit3 and bit4, that is, to clear the wrong rotation direction when facing the magnet and the wrong rotation angle when facing the magnet, and write FF to be fully clear.

Note: bit2/bit3/bit4/bit6/bit7 only takes effect for high-speed torque mode.
Controller status
	Object name
	Controller status

	Instruct address
	0x6001

	Object type
	U8,rw

	Range
	bit

	Storage type
	RAM

	Default value
	0

Controller status is defined as follows:

Bit0：External stop 1

Bit1：External stop 2
Bit2：Stall state
Bit3：busy state
Bit4：External stop 3

Bit5：The FIFO of PVT mode 3 is empty

Bit6：Lower FIFO limit for PVT mode 3

Bit7：Upper FIFO limit for PVT mode 3

In addition to the busy state, you can write 1 to clear the response state, and the usage is the same as 6000h.

Micro stepping/Current
Micro stepping
	Object name
	Micro stepping

	Instruct address
	0x600A

	Object type
	U16,rw

	Range
	0,2,4,8,16,32,64, 128

	Storage type
	ROM

	Default value
	32

Only parameters within the range can be configured, and other values are outliers.

Maximum phase current(Operating current)
	Object name
	Maximum phase current

	SDO ID
	0x600B

	Object type
	U16,rw

	Range
	0-6000

	Storage type
	ROM

	Default value
	0

The maximum phase current is the supply current to the motor during normal operation, usually set to the rated current of the motor. In some cases, adjustments can be made appropriately, with a general range of+-20% and not exceeding 50%. Excessive current can cause severe heat generation in the motor, and prolonged operation of the motor may pose a risk of demagnetization, affecting its lifespan. Unit: mA
Working mode switching

	Object name
	Working mode switching

	SDO ID
	0x6005

	Object type
	U8,rw

	Range
	0,1,4,5

	Storage type
	RAM

	Default value
	0

The values of the motor operating mode are defined as follows:

0: Position mode

1: Velocity mode (including analog speed regulation)

4: PP (Profile Position) mode (including analog positioning)

5: PV (Profile Velocity) mode

Position Mode:

The setting of the position mode is simple, easy to operate, you can use the relative or absolute running motion mode, after setting the running speed and direction of movement, give the corresponding running instructions, the motor will move to the corresponding position, because the acceleration and deceleration is the gear setting, the acceleration and deceleration can not be accurately adjusted, the equipment or parameters need to be debugged according to the load situation, the stepping command setting needs to be sent when the controller is idle, so to change the speed, change the stepping position, you need to wait for the motor to stop and then send the corresponding instructions, before it can run, Otherwise, the command will not be received.

Velocity Mode:

After entering the velocity mode, set the running speed and the motor will rotate all the time. Unless the limit or stop stepping command is triggered or the speed mode is exited, the motor will rotate according to the running speed, and the running speed can be changed (positive positive rotation, negative negative reversal) and speed adjustment can be adjusted by setting the running speed during operation, without stopping the movement. The velocity mode and the position mode share the same parameter register, and the acceleration and deceleration and start-stop speed cannot be modified during operation. The velocity mode is easy to set and stable, which is convenient for long-distance variable speed movement. If it is at high speed, changing direction directly may cause stalling. The speed setting needs to be adjusted according to the actual operation.

PP Mode:

PP mode uses trapezoidal acceleration and deceleration movement, each run can change the acceleration and deceleration, start and stop speed, running speed, running direction and target position, through the unified execution of the control word, you can switch the running task or preset the next task during the movement. PP mode can also use absolute or relative operation modes, and the acceleration and deceleration value settings are open to better control the smoothness of the operation and perform more complex operation planning.

PV Mode:

PV mode is called Profile Velocity Mode, which also uses trapezoidal acceleration and deceleration mode, and shares parameters such as start-stop speed, acceleration and deceleration, and running speed with PP mode. After entering PV mode, you need to set the running speed for the first run, use the control word to start the run, and then change the speed only need to modify the value of the running speed.

During PV mode operation, the motor will rotate according to the set running speed, and the stop can be achieved by exiting or switching the mode/setting the running speed to 0/step stop command. During the operation, the running speed can be set to change the running direction (positive positive rotation, negative negative reversal) and adjust the speed magnitude, without pausing the movement to set the parameters. Because the acceleration and deceleration are controllable and the acceleration and deceleration are uniform, it is easier to calculate the running time, and changing the running direction at high speed will not cause stalling

Position mode
Position mode rotating direction
	Object name
	Rotating direction

	Instruct address
	0x6002

	Object type
	U8,rw

	Range
	0,1

	Storage type
	RAM

	Default value
	1

The value of the rotation direction is defined as follows:

0: forward

1: backward
Position mode start speed
	Object name
	Start speed(Unit: pps)

	Instruct address
	0x6006

	Object type
	U16,rw

	Range
	0-0xFFFF

	Storage type
	ROM

	Default value
	600

Position mode stop speed

	Object name
	Stop speed(Unit: pps)

	Instruct address
	0x6007

	Object type
	U16,rw

	Range
	0-0xFFFF

	Storage type
	ROM

	Default value
	600

 If the start speed and stop speed jump directly, for example, jump from 0 to the maximum speed of starting speed and then accelerate or decelerate from maximum speed to stop speed and then jump to 0, so the start and stop speed cannot be set to 0.

The start-stop speed of the 600 can be adapted to most operating scenarios, and it can be switched when it needs to be started faster or run at a lower speed, and the rest of the time the RPM is configured using microstepping and speed settings.

Position mode acceleration coefficient
	Object name
	Acceleration coefficient

	Instruct address
	0x6008

	Object type
	U8,rw

	Range
	0-8

	Storage type
	ROM

	Default value
	8

Position mode deceleration coefficient
	Object name
	Deceleration coefficient

	Instruct address
	0x6009

	Object type
	U8,rw

	Range
	0-8

	Storage type
	ROM

	Default value
	8

[image: image10.emf]0

1000

2000

3000

4000

5000

6000

7000

8000

9000

1 155 309 463 617 771 92510791233138715411695184920032157231124652619277329273081323533893543369738514005

steps

PPS

Figure 5‑1
The Position mode uses S curve acceleration and deceleration. As shown in Figure 5-1, the start-up speed, stop speed, acceleration and deceleration can be configured separately, and the acceleration and deceleration support 1~8 for a total of 8 gears, and the corresponding acceleration values for each gear are as follows.PMC006C3 The acceleration value of the 1st gear is the largest, and the acceleration value of the 8th gear is the smallest.
	Gear
	Acceleration and deceleration value（PPS2）

	0
	Acceleration and deceleration cannot be enable

	1
	77440

	2
	48410

	3
	27170

	4
	21510

	5
	14080

	6
	10460

	7
	6915

	8
	5210

Position mode operating speed
	Object name
	Position mode operating speed（pps）

	Instruct address
	0x6003

	Object type
	S32,rw

	Range
	-200000 ~ +200000

	Storage type
	RAM

	Default value
	0

Note: the speed is a signed variable. Positive represents that the direction is 1, and negative represents that the direction is 0. So in the displacement mode it is recommended to set the speed firstly , and then set the direction.

The RPM per minute and the microstepping of the set, as well as the magnitude of the speed value, are as follows:

RPM = (PPS*60)/ (200*microstepping)

Similarly, the rotational speed per second is:

RPS = PPS / (200 * microstepping)

Position mode relative displacement command

	Object name
	Relative displacement command

	Instruct address
	0x6004

	Object type
	U32,rw

	Range
	0x0-0xFFFFFFFF

	Storage type
	RAM

	Default value
	0

Relative to the current motor position, let the motor run for a set number of steps, and an error will be reported if the displacement is 0. Write step number, then the controller will control the motor rotate a given number of steps which is calculated based on the current microstepping settings at the setting direction, speed and acceleration.

In open-loop mode, the number of steps is calculated based on the current microstepping setting.

In the incremental encoder closed-loop mode, the input unit is 4 times the resolution of the encoder, for example, CPR=4000, then the motor rotates once when 16000 is input.

In the closed-loop mode of the absolute encoder, the input unit is the same as the encoder counting unit, for example, if the accuracy is 14 bits, then the motor rotates once when 16384 is entered.
Position mode absolute displacement command
	Object name
	Absolute displacement command

	Instruct address
	0x601c

	Object name
	S32,rw

	Range
	Incremental or single-turn absolute encoder:-2^31 ~ (2^31-1)

Multi-turn absolute encoder:-2^31 ~ (2^31-1)

	Storage type
	RAM

	Default value
	0

The absolute displacement command gives the target position, and the controller will automatically calculate the direction and the required number of steps, and control the stepper motor to rotate to the specified position according to the set speed and acceleration.

In open-loop mode, the number of steps is calculated based on the current microstepping setting.

The number of pulses is calculated in the same way as the relative displacement command.

Stop stepper command
	Object name
	Stop stepper command

	Instruct address
	0x6020

	Object type
	U8,rw

	Range
	0

	Storage type
	RAM

	Default value
	0

I

The command immediately terminates the operation of the motor, there is no deceleration process, and it can take effect by writing 0.

Commonly used parameters

Motor position
	Object name
	Motor position

	Instruct address
	0x600C

	Object type
	S32,rw

	Range
	Incremental or Singleturn Absolute Encoder: -2^31 ~ (2^31-1)

Multiturn absolute encoder: -2^31 ~ (2^31-1)

	Storage type
	RAM

	Default value
	0

The current motor position is represented by the conversion of the number of pulses per revolution. The incremental type is a quadruple of the PPR, for example, 4000 lines are 16000 pulses for one revolution of the motor. The absolute accuracy is 2^14,16384 pulses per revolution.

In open-loop mode, the motor position is not saved, and the position information is automatically cleared to zero after the controller is powered off.

In incremental closed-loop mode, motor positions are not saved for conventional applications. There is a switch inside the controller that can record the position of the motor before the power is off. It is generally used in conjunction with the brake to prevent the motor from moving in the event of a power failure. Otherwise, the saved location is not referential.

In the closed-loop mode of absolute single-turn value, the controller can record the change of motor position within one turn, and the value of the extra turn will be automatically discarded after the power failure. Values greater than one turn are saved, and you can refer to the same application method as the incremental type.

Multi-turn absolute closed-loop mode, which can record the change of motor position in real time, and can still work after power failure. The position of the limit switch can be omitted.

Zero Calibration(absolute value encoder closed loop)

	Object Name
	Zero Calibration

	Instruct address
	0x6034

	Instruct address
	S32,rw

	Object type
	Single-turn absolute encoder：-2^31 ~ (2^31-1)

Multi-turn absolute encoder：-2^31 ~ (2^31-1)

	Range
	RAM

	Storage type
	0

 The controller of the absolute value encoder closed-loop supports this object, and when the user writes the value of a motor position (0x600C object), the value of the zero calibration is automatically calculated, the motor position read by the user = the encoder position + zero calibration .
Encoder position (absolute value encoder closed loop)

	Object Name
	Encoder position

	Instruct address
	0x6035

	Instruct address
	S32,rw

	Object type
	Single-turn absolute encoder：-2^31 ~ (2^31-1)

Multi-turn absolute encoder：-2^31 ~ (2^31-1)

	Range
	RAM

	Storage type
	0

For now only single-turn and multi-turn value reading is open, and the encoder feedback position is read in real time, and the value cannot be changed by command.

Currently, only absolute encoder readings are available.

Current reduction

	Object name
	Current reduction coefficient

	Instruct address
	0x600D

	Object type
	U8,rw

	Range
	0-3

	Storage type
	ROM

	Default value
	2

The value is defined as follows:

 0：Decay 0%;

 1：Decay 50%

 2：Decay 75%

 3：Decay 87.5%

0-3 corresponds to 4 gears of 100%, 50%, 25% and 12.5% idle current supply, the ratio is based on the percentage of the maximum phase current of 600Bh. The default is 50% for 2nd gear.
Motor enable
	Object name
	Motor enable

	Instruct address
	0x600E

	Object type
	U8,rw

	Range
	0,1

	Storage type
	RAM

	Default value
	1

The value of the motor is defined as follows:

0: Offline

1: Motor enable

Release control of the motor immediately after setting offline, the motor loses power supply and loses holding torque.

The controller is enabled by default, and no settings need to be manually written for power-on.

Stall stop setting(open-loop)
	Object name
	Stall stop setting

	Instruct address
	0x601b

	Object type
	Record

	Range
	0-1

	Storage type
	ROM

	Default value
	0

When this parameter is set to 1, the current running task stops when the stalled rotation state occurs, and when it is 0, the running task does not stop until the set number of pulses is sent.

Stall parameters(open-loop)
	Object name
	Stall parameters

	Instruct address
	0x6017

	Object type
	U16, rw

	Range
	bit

	Storage type
	ROM

	Default value
	0

Each of the test parameters is defined as follows:

Bit0~6: stalled threshold, signed number;

Bit7~15: reserved;

The controller uses the reverse electromotive force of the two-phase winding to achieve sensorless stall detection, and its accuracy is affected by various factors such as current, microstepping, voltage, motor parameters, etc., among which the motor speed and phase inductance are particularly significant. The range of the stall threshold is usually set between -10~10. The higher the setting value, the less sensitive the induction, and the recommended parameter is 3-5.
Real-time speed(Closed-loop)
	Object name
	Real-time speed(pps)

	Instruct address
	0x6030

	Object type
	S32, ro

	Range
	-300000~+300000

	Storage type
	RAM

	Default value
	0

Registers that can only be read in closed-loop applications. This parameter is to read the feedback value of the encoder to calculate the running speed, limited by the transmission speed, so the compensation value needs to be added, the recommended compensation formula is as follows:

(PPS*60/200/microstepping/10000) +1

In practice, it is necessary to test the motor or application separately and then write the compensation value.

Temperature threshold
	Object name
	Temperature threshold

	SDO ID
	0x6014

	Object type
	U8,rw

	Range
	100-135

	Storage type
	ROM

	Default value
	0x64

When the detection value is higher than the set threshold, the motor state (6000h) will be set to overheat, and the motor enable (600b) will be set to 0 to protect the controller.

Motor wiring configuration
	Object name
	Motor wiring configuration

	SDO ID
	0x6033

	Object type
	U8,rw

	Range
	0-3

	Storage type
	ROM

	Default value
	3

Using the register for direction control, you can change the motor and encoder reading direction without changing the physical line sequence, where bit0 is the motor line sequence, bit1 is the encoder line sequence, and the default is 0.

Automatic power-down save enabled

	Object name
	Automatic power-down save enabled

	Instruct address
	0x602A

	Object type
	U8,rw

	Range
	0-1

	Storage type
	ROM

	Default value
	0

H

e

Enabled when closed loop, the controller automatically detects the power-off of the system after it is enabled, and writes the current motor position into the EEPROM, it needs to be used with a power-off save instruction.

External emergency stop
The PMC006C3 controller provides two dedicated limit switch inputs that can be used as emergency stop or zero search functions.

When the emergency stop function is enabled, if the corresponding input pin detects a valid trigger edge, the controller will lock the motor and stop responding to the stepping command, and the user can read the controller status to see which input pin triggered the emergency stop. Only when the user clears the corresponding status bit does the controller continue to respond to new step commands.

	Object name
	External emergency stop

	Instruct address
	0x600F

	Object type
	Record

	Storage type
	ROM

	Reference number
	2

External emergency stop enabled

Subindex 0x01: External emergency stop enabled

	Object type
	U8,rw

	Range
	Bit

	Default value
	0

H

e

Each external emergency enable is represented by 1 bit, 0 for prohibition, and 1 for enablement, which is defined as follows:

bit0: external emergency stop 1 is enabled

bit1: External emergency stop 2 is enabled

The trigger mode of external emergency stop

	Object type
	U8,rw

	Range
	Bit

	Default value
	0

H

e

The stop trigger mode for each external emergency is represented by 1 bit, 0 for falling triggering and 1 for rising triggering, defined as follows:

bit0: External emergency stop 1 trigger mode

bit1: External emergency stop 2 trigger mode

Debouncing delay
	Object name
	EXT1/EXT2 stabilize delay（ms）

	Instruct address
	0x601a

	Object type
	Record

	Range
	0~200

	Storage type
	ROM

	Default value
	30

Similar to the keyboard debouncing delay, this parameter can set the high/low level time that needs to be maintained after triggering to prevent false triggering.
General IO port
The PMC006C3 controller provides 7 general IO (GPIO) ports, 2 external emergency stop input (EXT2) ports and 2 encoder input(ENC) ports.

General IO port setting
	Object name
	General IO port setting

	Instruct address
	0x6011

	Object type
	Record

	Storage type
	ROM

	Reference number
	2

Subindex 0x01: IO port direction
	Object type
	U16,rw

	Range
	bit

	Default value
	0

The direction of each IO port is represented by 1bit. 0 represents input, and 1 represents output. The meaning of each bit is as follow:

Bit0：GPIO1

Bit1：GPIO2

Bit2：GPIO3

Bit3：GPIO4

Bit4：GPIO5

Bit5：GPIO6

Bit6：GPIO7

Bit7：EXT1

Bit8：EXT2

Bit9：ENC1
Bit10：ENC2

Bit11：GPIO8

Among them, the direction of the emergency stop input port and the encoder input port is fixed as the input port and cannot be configured.

Note: GPIO0~GPIO7 is not led to the controller interface and is only for offline programming.

Subindex 0x02: IO port configuration
	Object type
	U32,rw

	Range
	0-0x3fffff

	Default value
	0

Each port is configured by 2 bits. If the IO port is configured as a input port, the meaning of the value is as follows:

0：FLOATING

1：IPU

2：IPD

3：AIN

If the IO port is configured as a output port, the meaning of the value is as follows:

0：OD

1：PP

The definition of the IO port configuration is defined as follows:

Bit1-0：GPIO1

Bit3-2：GPIO2

Bit5-4：GPIO3

Bit7-6：GPIO4

Bit9-8：GPIO5

Bit11-10：GPIO6

Bit13-12：GPIO7

Bit15-14：EXT1

Bit17-16：EXT2

Bit19-18：EXT3/ENC1

Bit21-20：ENC2

Bit23-22：GPIO8

General IO port value
	Object name
	General IO port value

	Instruct address
	0x6012

	Object type
	U16,rw

	Range
	bit

	Storage type
	RAM

	Default value
	0

The value of each IO port is represented by 1bit, 1 indicates a high level, 0 indicates a low level, and writing value to the port is not valid for the input port. The meaning of each bit is as follows:

Bit0：GPIO1 value

Bit1：GPIO2 value

Bit2：GPIO3 value

Bit3：GPIO4 value

Bit4：GPIO5 value

Bit5：GPIO6 value

Bit6：GPIO7 value

Bit7：EXT1 value

Bit8：EXT2 value

Bit9：EXT3/ENC1 value

Bit10：ENC2 value

Bit11：GPIO8 value

Closed-loop parameter
PMC006C3 supports 200-8000PPR incremental photoelectric encoder and uses PID to realize closed loop control.
Encoder resolution
	Object name
	Encoder resolution

	Instruct address
	0x6021

	Object type
	U16,rw

	Range
	Incremental encoder closed loop: 200,400,500,600,800,1000,1200,1600,2000,4000,8000
Absolute encoder closed loop:14

	Storage type
	ROM

	Default value
	1000/4000,14

Note: After changing the encoder resolution, the power of controller must be re-energize.

PPR: Encoder Accuracy/Number of Lines/Resolution

CPR: Encoder count

CPR = PPR * 4 CPR is the number of steps per lap.

KP parameter
	Object name
	KP parameter

	Instruct address
	0x6023

	Object type
	U8,rw

	Range
	1-255

	Storage type
	ROM

	Default value
	48

This parameter affects the transient response characteristic of the system.

KI parameter
	Object name
	KI parameter

	Instruct address
	0x6024

	Object type
	U8,rw

	Range
	1-255

	Storage type
	ROM

	Default value
	8

This parameter affects the cumulative error characteristics of the system.
KD parameter
	Object name
	KD parameter

	Instruct address
	0x6025

	Object type
	U8,rw

	Range
	1-255

	Storage type
	ROM

	Default value
	8

This parameter affects the transient response characteristic of the system.
Pre-filtering parameter
	Object name
	Pre-filtering parameter

	Instruct address
	0x6026

	Object type
	U8,rw

	Range
	1-128

	Storage type
	ROM

	Default value
	8

This parameter affects the speed characteristics of the system, you don't need to modify the default values.

In high-speed torque mode, it can be used as a switch and setting value for the guidance correction function.

Post-filtering parameter
	Object name
	Post-filtering parameter

	Instruct address
	0x6027

	Object type
	U16,rw

	Range
	1-255

	Storage type
	ROM

	Default value
	8

This parameter is reserved for the time being.
Stall length parameter
	Object name
	Stall length parameter

	Instruct address
	0x6028

	Object type
	U16,rw

	Range
	1-255

	Storage type
	ROM

	Default value
	64

The threshold value of the blocking is calculated in the current micro stepping unit. The higher the value, the lower the blockage judgment or sensitivity.

High-speed torque mode switch

	Object name
	High-speed torque mode switch

	Instruct address
	0x6029

	Object type
	U8,rw

	Range
	0-1

	Storage type
	ROM

	Default value
	0

If not enabled, the PID parameter does not take effect. After enablement, the default parameters KP 15, KI 8, KD 25 modify the PID parameters according to the operation requirements (it is not recommended to modify them without special requirements), write the value to the register, and write a power-down save instruction before it takes effect. The closed-loop version works.

After the enable is turned on, the operating mode will switch to the high-speed torque mode, the running speed is generally 1000-5000RPM, and the microstepping setting function is turned off, and the controller is automatically set. Other features include:

1. In torque mode, the automatic correction is started when the pre-filter > 20, and the larger the parameter value, the longer the correction response time;

2. The torque mode will automatically slow down when encountering resistance, and the speed will automatically increase when the resistance decreases; the torque is maintained at a constant maximum value when the deviation is automatically corrected;

3. Units of high-speed torque mode:

 a. Start speed, stop speed, maximum speed: 0.1lines/ms, for example, set 8000, that is, 800000lines/s, 4000ppr encoder is 3000rpm; Default parameters: start speed 20*0.1lines/ms, stop speed 20*0.1lines/ms.

b. Acceleration and deceleration: 0.01lines/ms^2, for example, set to 5, representing 50000lines/s^2; Default parameters: acceleration 32*0.01 lines/ms^2, deceleration 32*0.01lines/ms^.

Open loop application switch

	Object name
	Open loop application switch

	Instruct address
	0x6015

	Object type
	U32,rw

	Range
	0-1

	Storage type
	ROM

	Default value
	0

Write a value to the register, and write a power-down save instruction before it takes effect, and after the effect, it will block the encoder reading, and use an open-loop method to control the motor operation. Often used in emergencies. The closed-loop version works.
PP mode

Set the working mode to 4 to PP mode(Profile Position Mode), which adopts trapezoidal acceleration and deceleration, and can set the start speed, stop speed, acceleration, deceleration, running speed and target position independently. In the process of PP mode operation, the host computer can be received to write a new set of parameters, and finally by writing the control word to let the controller run smoothly from the previous motion parameters to the new parameters, or after the old parameters are completed, and then run with the new parameters.

PP mode parameter 1

PP mode parameter 1 is the ROM parameter, which can be saved by power off

	Object name
	PP mode parameter 1

	Instruct address
	0x602d

	Object type
	Record

	Storage type
	ROM

	Reference number
	4

Sub-index 0x01: pp acceleration, unit pps/s

	Object type
	U32,rw

	Range
	>150

	Default value
	32000

Sub-index 0x02: pp deceleration, unit pps/s

	Object type
	U32,rw

	Range
	>150

	Default value
	32000

Sub-index 0x03: pp start speed
	Object type
	U32,rw

	Range
	>600

	Default value
	600

Recommend to use the default value, the setting value should not be lower than 600.

Sub-index 0x04: pp stop speed
	Object type
	U32,rw

	Range
	>600

	Default value
	600

Recommend to use the default value, the setting value should not be lower than 600.

PP mode parameter 2
PP mode parameter 2 is the RAM parameter, which is reset to the default value after power-up.

	Object name
	PP mode parameter 2

	Instruct address
	0x602e

	Object type
	Record

	Storage type
	ROM

	Reference number
	4

Sub-index 0x01: control word
	Object type
	U16,rw

	Range
	0-0xFFFF

	Default value
	0

The function description for Control word object (602e,1)：

• Bit 4: Start the running task. When the value is converted from "0" to "1", the run task is executed. Example value: 0x10

• Bit 5: When the bit is set to "1", the run task triggered by bit 4 is executed immediately. If the bit is set to "0", the running task that is being executed will be completed before the next run task is started. Example value: 0x30

• Bit 6: The target position (602e,4) is the absolute position when the value is set to "1", and the target position is the relative position when the value is set to "0". Example value: 0x50 or 0x70

• Bit 8 (Halt): This bit is applied in PV mode, when the value of this bit changes from "1" to "0", the motor will accelerate to the target speed with a preset starting ramp. When the value of this bit changes from "0" to "1", the motor will slow down and stop moving.

• Bit 9: When the bit is set, the speed will change after reaching the first target position. That is, the braking is not performed until the first target is reached, since the motor should not stop in that position.

Sub-index 0x02: status word
	Object type
	U16,rw

	Range
	0-0xFFFF

	Default value
	0

The following bits in the state word object (602e,2) have special functions:

• Bit 10: When the final target has been reached, the bit will be set to "1" and the position is in place.

• Bit 12: This bit acknowledges receipt of a valid new target point. The bit will be set and reset synchronously with the bit "New Target Point" in the control word.

Subindex 0x03: running speed, the symbol represents the direction of rotation, the positive sign rotates positively, and the negative sign reverses
	Object type
	S32,rw

	Range
	-300000- -150,150-300000

	Default value
	32000

Subindex 0x04: PP Model Target Location
	Object type
	S32,rw

	Range
	-2^31~2^31

	Default value
	0

 Running tasks with a speed of 0 or a run length of 0 will receive an error.
PP model work timing
A new target position is set in the target position object (602e,4). Next, the bit 4 in the control word object (602e,1) is set for trigger the operation command. If the target location is valid, the controller will reply through the bit 12 in the object status word to locate the start of the operation. When the location is reached, the bit 10 in the status word will immediately set to a "1".

[image: image22.png]

object point

(0x602E,4)

Current speed

New target point

(0x602E 1 bit 4)
[image: image23.jpg]

Target point

confirmation

(0x602e,2 bit 12)
Reach the target

Point

(0x602e,2 bit 10)

Other running commands can be stored in the cache (see point in time 1 in the figure below), and bit 12 in the status word object (602e, 2 sets the target point response) will be set to "0". During the motion to the target position, a second target position can be sent to the controller to prepare for it. At this point, you can reset all parameters, such as velocity, acceleration, deceleration, etc. (point in time 2). If the cache is idle again, the next point in time can enter the queue (point in time 3).

[image: image24.png]~Y

-

If the cache is full, the new target point will be ignored (point in time 4). If bit 5 in the control word object (602e, 1 bit: "change the target point now") is set, the controller will not use cache when working, and the new running command will be executed directly (point in time 5).

New target point

(0x602e,1 bit 4)
Accept changes

immediately(602e,

1 bit 5)

[image: image25.png]N L

T\ | e o=

6040, 129 = 0)

1 N

-

object point

(602e,4)
Saved target point
Target point to be

processed
Target point

confirmation

(0x602e,2 bit 12)
Reach the target

Point(602e,2 bit 10)
The conversion process of the second target position:

The following figure shows the conversion process of the second target position when moving to the first target position. In this figure, the bit 5 of the control word object (602e, 1) is set to "1" and the new target value will be accepted immediately.

[image: image26.png]-V

object point

(602e,4)
Current speed

New target point

(602e,4 bit 4)
Target point

confirmation

(602e,2 bit 12)
Reach the target

Point(602e,2 bit 10)
The method of moving to the target position:

If the bit 9 in the control word object (602e,1) is a "0", it will first fully travel to the current target position. In this example, the final speed of the first target position is equal to zero. If bit 9 is set to "1", the final speed will be maintained until the target position is reached, and then the newly set motion parameters will take effect.

[image: image27.jpg]i=1 ,

object point

(602e,4)
Current speed

New target point

(602e,4 bit 4)
[image: image28.jpg]
Target point

confirmation

(602e,2 bit 12)
Reach the target

Point(602e,2 bit 10)
Synchronous position Motion mode

	Object name
	Synchronous position Motion control

	Instruct address
	0x601D

	Object type
	Record

	Storage type
	RAM

	Default value
	2

The synchronous positioning motion mode is the method of absolute immediate execution of the PP mode, by sending broadcast commands, so that the control in the specified group has set the task, and the synchronous stop is also used in the same way.

Before use, you need to switch the running mode to PP mode, set the group (group ID, 2006H) of the controller to be run to a unified value, and then write the running speed and absolute position in the registers of the synchronous positioning speed and synchronous positioning position, that is, set the motion task. After the setting is completed, the NMT broadcast command to let the specified group of controllers run synchronously.

SP speed
Sub-index 0x01: Synchronized location speed

	Object type
	S32,rw

	Range
	-2147483648-2147483647

	Default value
	0

SP position

Sub-index 0x02: Synchronized location position

	Object type
	S32,rw

	Range
	-2147483648-2147483647

	Default value
	0

Synchronous start and stop
PMC006C3 is an extension of the NMT instructions of the standard CANOpen to realize the synchronous start and stop of two or more nodes in a network.

Standard NMT format

	COB-ID
	Byte0
	Byte1

	0x000
	CS
	Node-ID

The expanded NMT directive adds new definitions of Byte0 and Byte1 without affecting the standard protocol.

Byte0 is defined as follows:

	Command
	Function

	10
	Start the synchronous positioning movement

Byte1 is the group ID, and the corresponding command operation will be executed only when the group ID received by the controller matches its own group ID. Start using NMT command to send, the first data is the function command, 10 is the start synchronous positioning, so the first parameter is 0A, the second parameter is the group id, if it is 1, it is 01.cob-id is 000.

Taking site 3 as an example, the sending instruction is set to run synchronously:

Set group ID 603 2f 06 20 00 01 00 00 00

Set sport mode 603 2f 05 60 00 04 00 00 00

Set the synchronous positioning speed 603 23 1d 60 01 00 7d 00 00

Set the synchronous location 603 23 1d 60 02 00 7d 00 00

Start the synchronous motion 000 0A 01

Analog positioning

PMC006C3 has an analog signal input port, and the internal 12-bit ADC, can be configured into analog positioning mode through software. First configure the analog positioning related parameters, and finally turn on the analog positioning enable. The following quart describes the analog related objects in detail.

	Object name
	Analog positioning setting

	Instruct address
	0x602f

	Object type
	Record

	Storage type
	ROM

	Reference number
	6

Analog positioning enabled

Subindex 0x01: Analog Positioning Enable, 1 On, 0 Off

	Object type
	U8, rw

	Range
	0,1

	Default value
	0

 Analog initial AD code

Subindex 0x02: The starting AD code of the analog quantifier, which corresponds to the minimum value of the analog position

	Object type
	U16, rw

	Range
	0-4096

	Default value
	0

 Analog adjustment interval
Subindex 0x03: Analog adjustment interval, Unit ms

The controller checks the analog input value at this time, and if the difference between the AD input value and the last input value is greater than the threshold value, the position will be adjusted once.

	Object type
	U16,rw

	Range
	0-65535

	Default value
	100

 Analog regulating trigger value

Subindex 0x04: The analog quantity adjusts the trigger value, and when the difference between the acquired AD code and the last acquired AD code is converted to a position greater than this value, the controller will adjust the position once.

	Object type
	U16,rw

	Range
	0-65535

	Default value
	30

 Minimum value of analog position

Subindex 0x05: Absolute position corresponding to the analog start AD code
	Object type
	S32,rw

	Range
	-2^31~2^31

	Default value
	0

 Maximum value of analog position

Subindex 0x06: The absolute position corresponding to the AD code of 4095
	Object type
	S32,rw

	Range
	-2^31~2^31

	Default value
	64000

offline programming
Offline programming parameter 1
	Object name
	Offline programming parameter 1

	SDO ID
	0x6018

	Object type
	Record

	Storage type
	ROM

	Default value
	2

Sub-index 0x01: Number of offline programming data instructions

	Object type
	U8, rw

	Range
	0-100

	Default value
	0

Sub-index 0x02: Offline automatic operation enable

	Object type
	U8, rw

	Range
	0,1

	Default value
	0

Offline auto operation value definition:

0: Do not enable offline automatic operation

1: Enable offline automatic operation

Offline programming parameter 2
	Object name
	Offline programming parameter 2

	SDO ID
	0x6019

	Object type
	Record

	Storage type
	RAM

	Default value
	5

Sub-index 0x01: Offline program pointer

	Object type
	U8, rw

	Range
	0-100

	Default value
	0

Sub-index 0x02: Offline command
	Object type
	U32, rw

	Range
	-

	Default value
	-

Offline instruction definitions are described in the User-Defined Programs section.

Sub-index 0x03: Save offline instructions
	Object type
	U16, rw

	Range
	0,1

	Default value
	0

Write 1 to save all the offline instructions
Sub-index 0x04: Run instructions
	Object type
	U16, rw

	Range
	0,1

	Default value
	0

Write 1 to the instruction pointed to by the pointer of the offline program
Brake control
Support brake control, output duty cycle software is adjustable, avoid the problem of long-term power generation and serious heat generation of brakes.

	Object name
	Brake control

	SDO ID
	0x6016

	Object type
	U8,rw

	Range
	0~100

	Storage type
	RAM

	Default value
	0

Analogue input read
The default voltage input is 0-3.3V, and special versions can support 4-20mA or 0-24V analog input, 12-bit ADC.

	Object name
	Analogue input

	SDO ID
	0x602B

	Object type
	U16,rw

	Range
	0~4095

	Storage type
	RAM

	Default value
	0

Step notification
The controller can set the step notification in position mode or speed mode, that is, when the motor movement reaches a certain set position in a step, the controller can report the step to position notification through TPDO, and supports two step notification position points.

	Object name
	Step notification

	SDO ID
	0x602C

	Object type
	Record

	Storage type
	RAM

	Default value
	3

Sub-index 0x01: Step notification status
	Object type
	U8, rw

	Range
	bit

	Default value
	0

The direction of each IO port is represented by 1 bit, 0 is the input, 1 is the output, and the meaning is as follows:

Bit0: Step notification position point 1 is valid;

Bit1: Step notification position point 2 is valid;

The object can be mapped to the TPDO, and when the object value changes, it will be automatically reported to the host computer.

Sub-index 0x02: Step notification position1(absolute setting) setting
	Object type
	S32, rw

	Range
	-2147483647 ~ +2147483647

	Default value
	0

Sub-index 0x03: Step notification position2(absolute setting) setting
	Object type
	S32, rw

	Range
	-2147483647 ~ +2147483647

	Default value
	0

Low-voltage protection
The controller detects the power loss of the system and can set the corresponding low voltage protection. The following describes the objects related to the low voltage protection settings in detail.

	Object name
	low voltage protection setting

	SDO ID
	0x6031

	Object type
	Record

	Storage type
	ROM

	Reference number
	3

Low-voltage protection control word

Sub-index 0x01: low voltage protection control switch
	Object type
	U16, rw

	Range
	bit

	Default value
	0

Bit0: Offline when the input supply voltage is detected to be below the set value

Bit1: Brake tightening when the input supply voltage is detected to be below the set value

If the corresponding bit bit is 1, it will be enabled, and if it is 0, it will be turned off.

 Offline voltage threshold

Sub-index 0x02: Offline threshold voltage, unit mV
	Object type
	U16, rw

	Range
	0-65535

	Default value
	0

When the low-voltage offline enable is turned on, the motor goes off when the supply voltage is detected below this voltage.
 Brake voltage threshold

Sub-index 0x03: Brake threshold voltage, unit mV
	Object type
	U16, rw

	Range
	0-65535

	Default value
	0

When the low-voltage brake enable is turned on, the motor goes off when the supply voltage is detected below this voltage.
User-defined programs
PMC006C3 controller can be configured to work offline, in which the controller automatically executes user-defined program code after powering on, which is pre-compiled and programmed into EEPROM by CQPUSI tool software.

When the PMC006C3 controller is working offline, the CAN communication interface can still respond to the user's online instructions.

The maximum number of user instructions supported by PMC006CX controller is 100.

For detailed examples of user-defined programs, please refer to the Controller Custom Programming Guide.

Tool software operation introduction

PMC006C3 can be used for command debugging, IO port setting detection, stepper motor parameter debugging and custom programming through the CQPUSI tool software PUSICAN. The tool software usage process is tested, and details can be found in the "Pusican Operation Guide".

Graphic programming support

The PUSICAN debugging tool software supports graphical programming, adding process items through the interface, and setting relevant motion parameters to complete simple movements.
[image: image11.png]EHIRIEL nof - PUSICANIH T & v1.0.49

- o x
XHp RS0 BE0 #Ee W8y S0w BHH

D & |) B K » = | o @ | £ | a a8 | @

FE AR GF | =u S8 ak gl BE 7 XA BgEE | =0 =i Em e | XT
SRERINE 2 x PMC007C3EP2(5#) L

;ggﬁ”ifi BB ol

@ FUCOOTCIEEZ (5#)

B Fase
T.Resetllotor 2. Wai tStepOK 3. Motorkun 8
st s G0 swmr e
BT EA B aom nEEm ER
54 64000 FittE: se00 HAam 16
ThER 160
BoEE 1600
. Resetllotor 5. Resetllotor 6. Resetllotor RS-, 400
FFREXTL TRSFFR BT i EXTL
BT EE HEHE B BT B
= o o= = e B e
s 5 x
mapping objectis E
by -

mapping object2:
046000020

Read channeld mapping parameter:
mapping object count:
1

PR

R[5 5]_aee Loc, pav ioc,

o [cap| NUM] SR

Scripting language support

PUSICAN debugging tool software supports LUA scripting language and has built-in CANOPEN SDO operation functions, which users can call directly in the script program. You can create or open a script file by clicking the "New" and "Open" icons in the upper left corner, and once the script program is written, you can control the program execution through the "Run" and "Stop" icons in the upper right corner. Figure 6-9 below.

The syntax of LUA scripting language is similar to that of C language, and in application scenarios without special UI interface requirements, users can easily complete complex control loop tasks with the help of the powerful functions of LUA scripting without developing the CANOPEN master program in the host computer.
[image: image12.png]FVT3_sine_v_cl.ncs - FUSICANfGi T & v1.0.49

- o x
P xfp ®E0 EE9 HFD WEY S0w #Ew
Jﬁﬂ‘/‘ué %»Io(@‘ BB‘@
P it G | mu S w88 o7 %@ [eEz=4 Bis | %F
) ax PMCOOTCIEP2(5%) _ PNT3.sine.v.chmes . -
= 924 time_elapse = 0 -l
=5, Bl 925
E 3 PHCO0Tx 9260—-[1
@ ooz 6n || gog bos = rrcos (wit)
928 velocity = -—w*r*sin(w*t)
929 —-1]
930
931 while (true)
932 edo
933 --FRELFIFOIRES
934 empty, thresholdl, threshold2 = get_pvt3fifo_state(s)
935 --FIFORFHRE, —HERF
936 while (threshold2 == 1)
937¢ do
938 ¢ if start_step == 0 then
939 —~JBBhPVTIEEE (RN $ETE4)
940 start_pvt_step (groupid)
941 start_step = 1
942 end
943 pusisleepsOl
944 empty, thresholdl, threshold2 = get_pvt3fifo_state(s) =
945 if (pusi.script state() == 0) then _';l
« >
£ 2 x
mapping objectt: =
0160100020
‘mapping object2
0160000020
Read channelé mapping parameter:
‘mapping object count:

1

QKo mm:mm=

| CAP| NUM| SCRL|

Electrical Characteristics

	Parameter
	Condition
	Min
	Typical
	Max
	Unit

	Input Voltage
	Normal 25℃
	9
	24
	36
	V

	Operation Temperature
	12V input voltage
	-20
	
	85
	℃

	IO maximum current
	source/sink current
	0
	
	20
	mA

	Output current
	Normal 25℃
	0
	2.5
	3
	A

Dimensions

Appendix 1 PMC006C3 Object dictionary table
	Index
	Sub index
	Object type
	Name
	Type
	Attr.
	PDO
	Storage type

	1000h
	--
	VAR
	Device type
	UINT32
	RO
	NO
	ROM

	1001h
	--
	VAR
	Error registor
	UINT8
	RO
	Optional
	RAM

	1002h
	--
	VAR
	manufacturer status register
	UINT32
	RO
	Optional
	RAM

	1003h
	--
	ARRAY
	pre-defined error field
	--
	--
	--
	RAM

	
	0h
	
	number of errors
	UINT8
	
	NO
	

	
	1h-7h
	
	standard error field
	
	
	Optional
	

	1005h
	--
	VAR
	COB-ID SYNC
	UINT32
	RW
	NO
	ROM

	1006h
	--
	VAR
	communication cycle period
	UINT32
	RW
	NO
	ROM

	1007h
	--
	VAR
	synchronous window length
	UINT32
	RW
	Optional
	ROM

	1008h
	--
	VAR
	manufacturer device name
	Visible String
	const
	NO
	ROM

	1009h
	--
	VAR
	manufacturer hardware version
	Visible String
	const
	NO
	ROM

	100ah
	--
	VAR
	manufacturer software version
	Visible String
	const
	NO
	ROM

	1014h
	--
	VAR
	COB-ID Emergency message
	UINT32
	RO
	NO
	ROM

	1015h
	--
	VAR
	Inhibit Time EMCY
	UINT16
	RW
	NO
	ROM

	1016h
	--
	ARRAY
	Consumer Heartbeat Time
	--
	--
	--
	ROM

	
	0h
	
	number entries
	UINT8
	RO
	NO
	

	
	1h-3h
	
	Consumer Heartbeat Time
	UINT32
	RW
	NO
	

	1017h
	--
	VAR
	Producer Heartbeat Time
	UINT16
	RW
	NO
	ROM

	1018h
	--
	RECORD
	Identity Object
	--
	--
	--
	ROM

	
	0h
	
	number of entries
	UINT8
	RO
	NO
	

	
	1h
	
	Vendor ID
	UINT32
	RO
	NO
	

	
	2h
	
	Product code
	UINT32
	RO
	NO
	

	
	3h
	
	Revision number
	UINT32
	RO
	NO
	

	
	4h
	
	Serial number
	UINT32
	RO
	NO
	

	1200h
	--
	RECORD
	Server SDO parameter
	--
	--
	--
	ROM

	
	0h
	
	number of entries
	UINT8
	RO
	NO
	

	
	1h
	
	COB-ID Client->Server (rx)
	UINT32
	RO
	NO
	

	
	2h
	
	COB-ID Server -> Client (tx)
	UINT32
	RO
	NO
	

	
	3h
	
	Node-ID of the SDO client
	UINT32
	RW
	NO
	

	1280h
	--
	RECORD
	Client SDO parameter
	--
	--
	--
	RAM

	
	0h
	
	number of entries
	UINT8
	RO
	NO
	

	
	1h
	
	COB-ID Client->Server (tx)
	UINT32
	RW
	NO
	

	
	2h
	
	COB-ID Server -> Client (rx)
	UINT32
	RW
	NO
	

	
	3h
	
	Node-ID of the SDO server
	UINT32
	RW
	NO
	

	1400h
	--
	RECORD
	receive PDO parameter
	--
	--
	--
	ROM

	
	0h
	
	largest sub-index supported
	UINT8
	RO
	NO
	

	
	1h
	
	COB-ID used by PDO
	UINT32
	RW
	NO
	

	
	2h
	
	transmission type
	UINT8
	RW
	NO
	

	
	3h
	
	inhibit time
	UINT16
	RW
	NO
	

	
	4h
	
	compatibility entry
	UINT8
	RW
	NO
	

	
	5h
	
	event timer
	UINT16
	RW
	NO
	

	1401h
	--
	RECORD
	receive PDO parameter
	--
	--
	--
	ROM

	
	0h
	
	largest sub-index supported
	UINT8
	RO
	NO
	

	
	1h
	
	COB-ID used by PDO
	UINT32
	RW
	NO
	

	
	2h
	
	transmission type
	UINT8
	RW
	NO
	

	
	3h
	
	inhibit time
	UINT16
	RW
	NO
	

	
	4h
	
	compatibility entry
	UINT8
	RW
	NO
	

	
	5h
	
	event timer
	UINT16
	RW
	NO
	

	1402h
	--
	RECORD
	receive PDO parameter
	--
	--
	--
	ROM

	
	0h
	
	largest sub-index supported
	UINT8
	RO
	NO
	

	
	1h
	
	COB-ID used by PDO
	UINT32
	RW
	NO
	

	
	2h
	
	transmission type
	UINT8
	RW
	NO
	

	
	3h
	
	inhibit time
	UINT16
	RW
	NO
	

	
	4h
	
	compatibility entry
	UINT8
	RW
	NO
	

	
	5h
	
	event timer
	UINT16
	RW
	NO
	

	1403h
	--
	RECORD
	receive PDO parameter
	--
	--
	--
	ROM

	
	0h
	
	largest sub-index supported
	UINT8
	RO
	NO
	

	
	1h
	
	COB-ID used by PDO
	UINT32
	RW
	NO
	

	
	2h
	
	transmission type
	UINT8
	RW
	NO
	

	
	3h
	
	inhibit time
	UINT16
	RW
	NO
	

	
	4h
	
	compatibility entry
	UINT8
	RW
	NO
	

	
	5h
	
	event timer
	UINT16
	RW
	NO
	

	1600h
	--
	RECORD
	receive PDO mapping
	--
	--
	--
	ROM

	
	0h
	
	number of mapped application objects in PDO
	UINT8
	RO
	NO
	

	
	1h-8h
	
	PDO mapping for the nth application object to be mapped
	UINT32
	RW
	NO
	

	1601h
	--
	RECORD
	receive PDO mapping
	--
	--
	--
	ROM

	
	0h
	
	number of mapped application objects in PDO
	UINT8
	RO
	NO
	

	
	1h-8h
	
	PDO mapping for the nth application object to be mapped
	UINT32
	RW
	NO
	

	1602h
	--
	RECORD
	receive PDO mapping
	--
	--
	--
	ROM

	
	0h
	
	number of mapped application objects in PDO
	UINT8
	RO
	NO
	

	
	1h-8h
	
	PDO mapping for the nth application object to be mapped
	UINT32
	RW
	NO
	

	1603h
	--
	RECORD
	receive PDO mapping
	--
	--
	--
	ROM

	
	0h
	
	number of mapped application objects in PDO
	UINT8
	RO
	NO
	

	
	1h-8h
	
	PDO mapping for the nth application object to be mapped
	UINT32
	RW
	NO
	

	1800h
	--
	RECORD
	transmit PDO parameter
	--
	--
	--
	ROM

	
	0h
	
	largest sub-index supported
	UINT8
	RO
	NO
	

	
	1h
	
	COB-ID used by PDO
	UINT32
	RW
	NO
	

	
	2h
	
	transmission type
	UINT8
	RW
	NO
	

	
	3h
	
	inhibit time
	UINT16
	RW
	NO
	

	
	4h
	
	reserved
	UINT8
	RW
	NO
	

	
	5h
	
	event timer
	UINT16
	RW
	NO
	

	1801h
	--
	RECORD
	transmit PDO parameter
	--
	--
	--
	ROM

	
	0h
	
	largest sub-index supported
	UINT8
	RO
	NO
	

	
	1h
	
	COB-ID used by PDO
	UINT32
	RW
	NO
	

	
	2h
	
	transmission type
	UINT8
	RW
	NO
	

	
	3h
	
	inhibit time
	UINT16
	RW
	NO
	

	
	4h
	
	reserved
	UINT8
	RW
	NO
	

	
	5h
	
	event timer
	UINT16
	RW
	NO
	

	1802h
	--
	RECORD
	transmit PDO parameter
	--
	--
	--
	ROM

	
	0h
	
	largest sub-index supported
	UINT8
	RO
	NO
	

	
	1h
	
	COB-ID used by PDO
	UINT32
	RW
	NO
	

	
	2h
	
	transmission type
	UINT8
	RW
	NO
	

	
	3h
	
	inhibit time
	UINT16
	RW
	NO
	

	
	4h
	
	reserved
	UINT8
	RW
	NO
	

	
	5h
	
	event timer
	UINT16
	RW
	NO
	

	1803h
	--
	RECORD
	transmit PDO parameter
	--
	--
	--
	ROM

	
	0h
	
	largest sub-index supported
	UINT8
	RO
	NO
	

	
	1h
	
	COB-ID used by PDO
	UINT32
	RW
	NO
	

	
	2h
	
	transmission type
	UINT8
	RW
	NO
	

	
	3h
	
	inhibit time
	UINT16
	RW
	NO
	

	
	4h
	
	reserved
	UINT8
	RW
	NO
	

	
	5h
	
	event timer
	UINT16
	RW
	NO
	

	1a00h
	--
	RECORD
	transmit PDO mapping
	--
	--
	--
	ROM

	
	0h
	
	number of mapped application objects in PDO
	UINT8
	RO
	NO
	

	
	1h-8h
	
	PDO mapping for the n-th
application object to be mapped
	UINT32
	RW
	NO
	

	1a01h
	--
	RECORD
	transmit PDO mapping
	--
	--
	--
	ROM

	
	0h
	
	number of mapped application objects in PDO
	UINT8
	RO
	NO
	

	
	1h-8h
	
	PDO mapping for the n-th
application object to be mapped
	UINT32
	RW
	NO
	

	1a02h
	--
	RECORD
	transmit PDO mapping
	--
	--
	--
	ROM

	
	0h
	
	number of mapped application objects in PDO
	UINT8
	RO
	NO
	

	
	1h-8h
	
	PDO mapping for the n-th
application object to be mapped
	UINT32
	RW
	NO
	

	1a03h
	--
	RECORD
	transmit PDO mapping
	--
	--
	--
	ROM

	
	0h
	
	number of mapped application objects in PDO
	UINT8
	RO
	NO
	

	
	1h-8h
	
	PDO mapping for the n-th
application object to be mapped
	UINT32
	RW
	NO
	

	2002h
	--
	VAR
	Node ID
	UINT8
	RW
	NO
	ROM

	2003h
	--
	VAR
	Baud rate
	UINT8
	RW
	NO
	ROM

	2006h
	--
	VAR
	Group ID
	UINT8
	RW
	NO
	ROM

	2007h
	--
	VAR
	System control
	UINT8
	RW
	NO
	RAM

	6000h
	--
	VAR
	Error state
	UINT8
	RW
	Optional
	RAM

	6001h
	--
	VAR
	Controller status
	UINT8
	RW
	Optional
	RAM

	6002h
	--
	VAR
	Rotation direction
	UINT8
	RW
	NO
	RAM

	6003h
	--
	VAR
	Max speed
	UINT32
	RW
	NO
	RAM

	6004h
	--
	VAR
	Step command
	UINT32
	RW
	NO
	RAM

	6005h
	--
	VAR
	Operation mode
	UINT8
	RW
	NO
	RAM

	6006h
	--
	VAR
	Start speed
	UINT16
	RW
	NO
	ROM

	6007h
	--
	VAR
	Stop speed
	UINT16
	RW
	NO
	ROM

	6008h
	--
	VAR
	Acceleration coefficient
	UINT8
	RW
	NO
	ROM

	6009h
	--
	VAR
	Deceleration coefficient
	UINT8

	RW
	NO
	ROM

	600ah
	--
	VAR
	Microstepping
	UINT16
	RW
	NO
	ROM

	600bh
	--
	VAR
	Max phase current
	UINT16
	RW
	NO
	ROM

	600ch
	--
	VAR
	Motor position
	UINT32
	RW
	Optional
	RAM

	600dh
	--
	VAR
	Current attenuation
	UINT8
	RW
	NO
	ROM

	600eh
	--
	VAR
	Motor enable
	UINT8
	RW
	NO
	RAM

	600fh
	--
	RECORD
	External emergency stop
	UINT8
	RW
	NO
	ROM

	
	0h
	
	The number of parameters
	UINT8
	RO
	NO
	ROM

	
	1h
	
	External emergency stop enable
	UINT8
	RW
	NO
	RAM

	
	2h
	
	Trigger mode of external emergency stop
	UINT8
	RW
	NO
	RAM

	6010h
	--
	RECORD
	PVT step
	UINT8
	RW
	NO
	ROM

	
	0h
	
	The number of parameters
	UINT8
	RO
	NO
	ROM

	
	1h
	
	PVT operation control
	UINT8
	RW
	NO
	RAM

	
	2h
	
	PVT mode control
	UINT8
	RW
	NO
	RAM

	
	3h
	
	Max PVT point number
	UINT16
	RW
	NO
	RAM

	
	4h
	
	PVT pointer
	UINT16
	RO
	NO
	ROM

	
	5h
	
	Start index of PVT mode 1
	UINT16
	RW
	NO
	RAM

	
	6h
	
	End index of PVT mode 1
	UINT16
	RW
	NO
	RAM

	
	7h
	
	Start index of PVT model 2 acceleration stage
	UINT16
	RW
	NO
	RAM

	
	8h
	
	End index of PVT model 2 acceleration stage
	UINT16
	RW
	NO
	RAM

	
	9h
	
	Start index of PVT model 2 cycle stage
	UINT16
	RW
	NO
	RAM

	
	Ah
	
	End index of PVT model 2 cycle stage
	UINT16
	RW
	NO
	RAM

	
	Bh
	
	The times of PVT model 2 cycle stage
	UINT16
	RW
	NO
	RAM

	
	Ch
	
	Start index of PVT model 2 deceleration stage
	UINT16
	RW
	NO
	RAM

	
	Dh
	
	End index of PVT model 2 deceleration stage
	UINT16
	RW
	NO
	RAM

	
	Eh
	
	FIFO depth of PVT mode 3
	UINT16
	RW
	NO
	RAM

	
	Fh
	
	FIFO lower limit of PVT mode 3
	UINT16
	RW
	NO
	RAM

	
	10h
	
	FIFO upper limit of PVT mode 3
	UINT16
	RW
	NO
	RAM

	
	11h
	
	PVT position
	INT32
	RW
	NO
	RAM

	
	12h
	
	PVT speed
	INT32
	RW
	NO
	RAM

	
	13h
	
	PVT time
	INT32
	RW
	NO
	RAM

	6011h
	--
	RECORD
	GPIO parameter
	--
	--
	--
	ROM

	
	0h
	
	The number of GPIO parameters
	UINT8
	RO
	NO
	

	
	1h
	
	GPIO direction
	UINT16
	RW
	NO
	

	
	2h
	
	GPIO configuration
	UINT32
	RW
	NO
	

	6012h
	--
	VAR
	GPIO value
	UINT16
	RW
	Optional
	RAM

	6013h
	--
	RECORD
	OCP parameter(ROM)
	--
	--
	--
	

	
	0h
	
	OCPNumber of parameters
	UINT8
	RO
	NO
	

	
	1h
	
	OCT1
	UINT8
	RW
	NO
	

	
	2h
	
	OCD1
	UINT8
	RW
	NO
	

	6016h
	--
	VAR
	Brake control
	UINT8
	RW
	NO
	RAM

	6017h
	
	
	Stall parameter(open loop)
	UINT8
	RW
	
	ROM

	6018h
	--
	RECORD
	Off-line programming parameter 1
	--
	--
	--
	ROM

	
	0h
	
	Number of Off-line programming parameter 1
	UINT8
	RO
	NO
	

	
	1h
	
	Total number of offline programming command
	UINT8
	RW
	NO
	

	
	2h
	
	Offline operation enable automatically
	UINT8
	RW
	NO
	

	6019h
	--
	RECORD
	Off-line programming parameter 2
	--
	--
	--
	RAM

	
	0h
	
	Number of Off-line programming parameter 2
	UINT8
	RO
	NO
	

	
	1h
	
	Off-line parameter pointer
	UINT8
	RW
	NO
	

	
	2h
	
	Off-line command
	UINT32
	RW
	NO
	

	
	3h
	
	Offline command preservation
	UINT8
	RW
	NO
	

	
	4h
	
	Run current command
	UINT8
	RW
	NO
	

	601ah
	--
	VAR
	Jitter delay of external emergency stop
	UINT16
	RW
	NO
	ROM

	601bh
	--
	VAR
	Locked-Rotor configuration
	UINT8
	RW
	NO
	ROM

	601ch
	--
	VAR
	Absolute position step
	INT32
	RW
	NO
	RAM

	601dh
	--
	RECORD
	PV step
	--
	--
	--
	RAM

	
	0h
	
	The number of PV step parameter
	UINT8
	RO
	NO
	

	
	1h
	
	PV speed
	INT32
	RW
	NO
	

	
	2h
	
	PV position
	INT32
	RW
	NO
	

	6020h
	--
	VAR
	Termination step
	UINT8
	RW
	NO
	RAM

	6021h
	--
	VAR
	Encoder CPR
	UINT16
	RW
	NO
	ROM

	6022h
	--
	VAR
	Position saving value

power-down
	INT32
	RO
	NO
	ROM

	6023h
	--
	VAR
	Closed-loop parameter KP
	UINT8
	RW
	NO
	ROM

	6024h
	--
	VAR
	Closed-loop parameter KI
	UINT8
	RW
	NO
	ROM

	6025h
	--
	VAR
	Closed-loop parameter KD
	UINT8
	RW
	NO
	ROM

	6026h
	--
	VAR
	Closed-loop Pre-filter parameter
	INT8
	RW
	NO
	ROM

	6027h
	--
	VAR
	Closed-loop post-filter parameter
	INT16
	RW
	NO
	ROM

	6028h
	--
	VAR
	Closed-loop stall length
	INT16
	RW
	NO
	ROM

	6029h
	--
	VAR
	Enable closed-loop torque loop
	UINT8
	RW
	NO
	ROM

	602Ah
	--
	VAR
	Enable saving automatically when power is off
	UINT8
	RW
	NO
	ROM

	602Bh
	--
	VAR
	Analogue input
	UINT16
	RW
	Optional
	RAM

	602Ch
	--
	RECORD
	Step notification
	--
	--
	--
	RAM

	
	0h
	
	Number of parameters
	UINT8
	RO
	NO
	

	
	1h
	
	Step notification status
	UINT8
	RW
	Optional
	

	
	2h
	
	Step notification position 1
	INT32
	RW
	Optional
	

	
	3h
	
	Step notification position 2
	INT32
	RW
	Optional
	

	602Dh
	--
	RECORD
	PP/PVmode parameters 1
	--
	--
	--
	ROM

	
	0h
	
	Number of parameters
	UINT8
	RO
	NO
	

	
	1h
	
	PP Accelerated speed
	UINT32
	RW
	Optional
	

	
	2h
	
	PP Dccelerated speed
	UINT32
	RW
	Optional
	

	
	3h
	
	PP Initial speed
	UINT32
	RW
	Optional
	

	
	4h
	
	PP Stop speed
	UINT32
	RW
	Optional
	

	602Eh
	--
	RECORD
	PP/PVmode parameters 2
	--
	--
	--
	RAM

	
	0h
	
	Number of parameters
	UINT8
	RO
	NO
	

	
	1h
	
	PP control word
	UINT16
	RW
	Optional
	

	
	2h
	
	PP status word
	UINT16
	RW
	Optional
	

	
	3h
	
	PP running speed
	INT32
	RW
	Optional
	

	
	4h
	
	PP target location
	INT32
	RW
	Optional
	

	602Fh
	--
	RECORD
	Analog location parameters
	--
	--
	--
	ROM

	
	0h
	
	Number of parameters
	UINT8
	RO
	NO
	

	
	1h
	
	Enable analog positioning
	UINT8
	RW
	Optional
	

	
	2h
	
	Analog initial AD code
	UINT16
	RW
	Optional
	

	
	3h
	
	Analog adjustment interval time
	UINT16
	RW
	Optional
	

	
	4h
	
	Analog regulating trigger value
	UINT16
	RW
	Optional
	

	
	5h
	
	Minimum value of analog position
	INT32
	RW
	Optional
	

	
	6h
	
	Maximum value of analog position
	INT32
	RW
	Optional
	

	6030h
	--
	VAR
	real-time speed
	INT32
	RW
	Optional
	RAM

	6031h
	--
	RECORD
	power-down behavior control
	--
	--
	--
	ROM

	
	0h
	
	Number of parameters
	UINT8
	RO
	NO
	

	
	1h
	
	Power-down behavior control word
	UINT16
	RW
	Optional
	

	
	2h
	
	Power off motor enabling threshold
	UINT16
	RW
	Optional
	

	
	3h
	
	Brake lock threshold
	UINT16
	RW
	Optional
	

	6034h
	--
	VAR
	Calibration zero position
	INT32
	RW
	NO
	ROM

	6035h
	--
	VAR
	Encoder position
	INT32
	RW
	Optional
	RAM

	6033h
	--
	VAR
	Running direction control
	U8
	RW
	Optional
	ROM

	6014h
	--
	VAR
	Temperature threshold setting
	U8
	RW
	Optional
	ROM

Appendix 2 CANopen Communication Examples
SDO Read/Write Examples
SDO Read
Data frame format

Master send:

	600+ServNodeID
	0
	40
	Index
	Subindex
	00
	00
	00
	00

Slave response:
	When the data length is 1 byte

	580+ServNodeID
	0
	4F
	Index
	Subindex
	d0
	0
	0
	0

	When the data length is 2 bytes

	580+ServNodeID
	0
	4B
	Index
	Subindex
	d0
	d1
	0
	0

	When the data length is 3 bytes

	580+ServNodeID
	0
	47
	Index
	Subindex
	d0
	d1
	d2
	0

	When the data length is 4 bytes

	580+ServNodeID
	0
	43
	Index
	Subindex
	d0
	d1
	d2
	d3

SDO Read example
Master send: 605 40 01 60 00 00 00 00 00
Slave response: 585 4F 01 60 00 08 00 00 00
The master initiated a read request to the device whose node ID is 5. The index and subindex of the request are 0x6001 and 0x00 respectively, which corresponds to controller status parameter in the PMC007 Object Dictionary. The slave response 4F indicates that the parameter length is one byte, the data is 0x08 and the device is in busy state.

SDO Write in
Data frame format
Master send:

	When the data length is 1 byte

	600+ServNodeID
	0
	2F
	Index
	Subindex
	d0
	0
	0
	0

	When the data length is 2 byte

	600+ServNodeID
	0
	2B
	Index
	Subindex
	d0
	d1
	0
	0

	When the data length is 3 byte

	600+ServNodeID
	0
	27
	Index
	Subindex
	d0
	d1
	d2
	0

	When the data length is 4 byte

	600+ServNodeID
	0
	23
	Index
	Subindex
	d0
	d1
	d2
	d3

Correct response from the slave station:

	580+ServNodeID
	0
	60
	Index
	Subindex
	00
	00
	00
	00

Error response from the slave station:

	580+ServNodeID
	0
	80
	Index
	Subindex
	SDO abort code error

Note: Abort code error SDO returns the corresponding parameters according to the specific error. The specific parameters are shown in Appendix 4.
SDO Write example
Master send: 605 2F 03 20 00 07 00 00 00

Slave response: 585 60 03 20 00 00 00 00 00

The master initiated a write request to the device whose node ID is 5. The index and subindex of the request are 0x2003 and 0x00 respectively, which corresponds to the baud rate setting parameter in the PMC007 Object Dictionary. and the write data is 7, which indicates the baud rate is set to 800Kbit/s. The slave response 60 indicates the data is written successfully.

Master send: 605 23 04 60 00 80 0C 00 00

Slave response: 585 80 04 60 00 22 00 00 08

The master initiated a write request to the device whose node ID is 5. The index and subindex of the request are 0x6004 and 0x00 respectively, which corresponds to the step command parameter in the PMC007 Object Dictionary. and the write data is C80(3200), which indicates that the motor performs 3200 steps. The slave response 60 indicates the data is written unsuccessfully, and error code is 0x08000022. See Appendix 4 we can know that the error code indicates that the data cannot be transferred or saved to the application due to the current device status. Check whether the controller status parameter is that the external stop is enabled and whether there is an error in the error state.

Appendix 3 PDO configuration example
PDO overview

PDO communication is based on the Producer/Consumer model, which is mainly used to transfer real-time data. The node which generated data puts the data with its own node ID on the bus, and nodes which need the data can be configured to receive the data sent by the node. The transmission of PDO is triggered by the event, which can represent a change in a PDO variable and can also be a time of expiration or a specific message to be received. Process data is transmitted directly in an CAN message without a protocol header file. The length of a PDO is between 0 and 8 bytes.

PDOs is included in the mapping parameter and communication parameter. PMC007xx supports 4 PDOs.

The structure PDO——Mapping parameter

A PDO in the Object Dictionary consists of adjacent items. The mapping parameters define the connection of these items. A mapping parameter defines a data source through an index, a subindex, and a number of bits.

For example:

[image: image13.jpg]Index | Sub-index | Object Data | Description

0x1A00|0 4 Number of mapped entries

1 0x20000310 | The entry at index 0x2000, sub-index 3, with
a length of 16 bit, is mapped to bytes 0 and 1
within the CAN message.

2 0x20000108 | The entry at index 0x2000, sub-index 1, with
a length of 8 bit, is mapped to byte 2 within
the CAN message.

Table 1: Example for mapping parameters for the first TPDO

A CAN message has not more than 8 bytes. This means that there can send 8 object items at most when there is only one PDO used.

[image: image14.jpg]Object Dictionary

[Entry 1: UNSIGNEDS Varl

[Entry 2: UNSIGNEDS Var2
Generating the Mapping parameters

Entry 3: UNSIGNEDI6 Var3

[Entry 6: REAL32 Var6

PDO 1 v

Mapping parameter

Tndex. subindex, entry 3

Tndgx. subindex. enfry 1
ex. supindex. enry 2
Adex. sybindes, enry 6

i

/7]]

[COB identifier Jentry3 [entry1 Jentry2 Jenty6

Figure 3: Mapping of Object Dictionary entries into a PDO

The structure PDO——Communication parameter
In order to transmit a PDO, the communication parameter defines the nature of the transport and the CAN identifier.

[image: image15.jpg]Index |Sub-index | Object Data Description
1800h |0 Number on entries

1 COB-ID CAN identifier for the PDO

2 Transmission Type transmission type of the PDO

3 Inhibit Time minimum inhibit time for a TPDO

4 reserved reserved

5 Event Time maximum time between two TPDOs
Table 4: Communication parameter for the first TPDO

PDO communication parameter is an item in the Object Dictionary.

(RPDOs: index 0x1400–0x15FF,TPDOs: 0x1800-0x19FF)

If allowed, the communication parameter can be modified by the CAN with the help of the data service object.

COB-ID(CAN identifier. Subindex 1)

COB-ID as proof of identity, the priority of PDO is before the bus access. For every CAN message, there is only one sender (producer). However, it allows multiple recipients (consumers) for the existing message.

[image: image16.jpg]Bit 31 30 29 |28-11 10-0
11-bit-ID |0/1 0/1 0 000000000000000000 11-bit identifier
29-bit-ID |0/1 |0/1 |1 |29-bit identifier

Table 5: Structure of a COB-ID for PDOs

The thirtieth bit is 0, which indicates that a remote transmission request (RTR) is allowed for this PDO.

PDO COB-ID distribution:
	PDO1(send)
	181H-1FFH

	PDO1(receive)
	201H-27FH

	PDO2(send)
	281H-2FFH

	PDO2(receive)
	301H-37FH

	PDO3(send)
	381H-3FFH

	PDO3(receive)
	401H-47FH

	PDO4(send)
	481H-4FFH

	PDO4(receive)
	501H-57FH

PDO Trigger mode
Sending of PDO can be triggered by the following methods:
1) Event trigger.

2) Time trigger.

3) Single query.

4) Synchronization.
When only use event to trigger the sending of PDO, once the event process is changed, the PDO is sent. It may bring very serious consequences, that is, when the frequency of a process data change is very high, the PDO is sent uninterruptedly , that will cause the message of other nodes is not sent out, which seriously affect the efficiency of the bus.

CANopen uses the " Inhibit time " mechanism to solve this problem. Inhibit time is a configurable time period in units of 100 us. The same PDO sends at least this time interval, so it can determine the maximum transmission frequency of an event triggered PDO.

Generally, the sending of PDO can be triggered by a combination of any of the trigger mode. But the most common way is to combine the Event trigger and Time trigger. In the case of single event trigger, since process data did not change for a long time (such as temperature variables), the PDO have not been triggered for a long time. It will affect the nodes just joined the network. So if plus time triggered mode, PDO is forced to send again within the stipulated time. For example, for a PDO, the inhibition time is configured as 5, event timer is configured as 250, so the PDO can be sent when process data changes. The minimal interval of sending is 5ms, on the other hand, no matter whether there is no change in the data, the PDO will be sent every 250ms.

Configuration of PDO trigger mode is realized through setting subindex 2 in the Object Dictionary of PDO communication parameter. The range of the subindex is 0-255 The following lists the different values for different trigger modes.

0: PDO is sent after SYNC is received, but not cycle.

1-240: PDO is sent periodically after SYNC is received . The value is the number of SYNC between two send of PDO .

255：Event trigger.

PDO Configuration example
PMC007xx supports PDO mapping by SDO configuration. To configure the GPIO value to be TPDO1 as an example, the SDO is sent as:

Set the COB-ID of communication to 187, which means that the device with node ID 7 receives this PDO

Sent by the main station: 607 23 00 18 01 87 01 00 80

Clear channel information

Main station sending: 607 2F 00 1A 00 00 00 00 00 00

Set as event triggered

Main station sending: 607 2F 00 18 02 FF 00 00 00 00

Set the Inhibit time to 5ms

Sent by the main station: 607 2B 00 18 03 32 00 00 00

Set the Event time to 1000ms

Sent by the main station: 607 2B 00 18 05 E8 03 00 00

Set mapping parameters to map 0x6012 to TPDO1

Main station sending: 607 23 00 1A 01 10 00 12 60

Set the mapping channel TPDO2 parameter to 0

Sent by the main station: 607 23 00 1A 02 00 00 00 00 00

Set the mapping channel TPDO3 parameter to 0

Main station sending: 607 23 00 1A 03 00 00 00 00 00

Set the number of mapping entries 1

Main station sending: 607 2F 00 1A 00 01 00 00 00

Resend communication site information

Sent by the main station: 607 23 00 18 01 83 01 00 00After the configuration is completed, PMC007 will send PDO message every 1s. When the of value GPIO port is changed, PMC007 will also issue the message.

187 03 00

The message indicates that GPIO1 and GPIO2 are both high level.

Appendix 4 SDO abort code error
	Abort code
	Code function description

	05030000
	No alternation of trigger bits

	05040000
	SDO protocol timeout

	05040001
	Illegal or unknown Client/Server command word

	05040002
	Invalid block size (only Transfer Block mode)

	05040003
	Invalid serial number (only Transfer Block mode)

	05030004
	CRC error (only Transfer Block mode)

	05030005
	Out of memory

	06010000
	Access is not supported for the Object.

	06010001
	Try to read write-only objects

	06010002
	Try to write read-only objects

	06020000
	Object does not exist in the Object Dictionary

	06040041
	Object cannot be mapped to PDO

	06040042
	The number and length of the mapped object exceeds the PDO length

	06040043
	General parameters are not compatible

	06040047
	General equipment is not compatible

	06060000
	Hardware error causes the object access failure

	06060010
	Data type does not match, and service parameter length does not match

	06060012
	Data type does not match, the service parameter is too large

	06060013
	Data type does not match, the service parameter is too small

	06090011
	The subindex does not exist

	06090030
	Beyond the range of the parameter values (when write access)

	06090031
	Parameter value is written too large

	06090032
	Parameter value is written too small

	06090036
	The maximum value is less than the minimum value

	08000000
	General error

	08000020
	Data cannot be transferred or saved to applications

	08000021
	Due to local control, data cannot be transferred or saved to applications

	08000022
	Due to the current device status, data cannot be transferred or saved to applications

	08000023
	The dynamic condition of Object dictionary generates error or Object Dictionary does not exist

Input negative

Input positive

Index,SubIndex——Index and subindex values in the object dictionary in the node 1 of the data to be read

600——Command word for receiving message

ServNodeID——ID Node of the node 1

40——Command word for requesting to read data

0——Standard frame

1——Extended frame

00 00 00 00——Data area

Index, Subindex——Index and subindex values in the object dictionary in the node 3 of the data to be read

580——Send SDO

ServNodeID——ID Node of the node 3

60—Command word for response to write data successfully

0——Standard frame

1——Extended frame

00 00 00 00——Data area

SDO abort code error——According to the error, the code is different. For details see Appendix 4

Index, Subindex——Index and subindex values in the object dictionary in the node 3 of the data to be read

80—Command word for response

0——Standard frame

1——Extended frame

580——Command word for sending message

ServNodeID——ID Node of the node 3

PULSE Robot Control System
 www.en.pusirobot.com
Page 62 of 62

